These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


175 related items for PubMed ID: 10210188

  • 1. On the role of the cis-proline residue in the active site of DsbA.
    Charbonnier JB, Belin P, Moutiez M, Stura EA, Quéméneur E.
    Protein Sci; 1999 Jan; 8(1):96-105. PubMed ID: 10210188
    [Abstract] [Full Text] [Related]

  • 2. Intriguing conformation changes associated with the trans/cis isomerization of a prolyl residue in the active site of the DsbA C33A mutant.
    Ondo-Mbele E, Vivès C, Koné A, Serre L.
    J Mol Biol; 2005 Apr 01; 347(3):555-63. PubMed ID: 15755450
    [Abstract] [Full Text] [Related]

  • 3. Structural analysis of three His32 mutants of DsbA: support for an electrostatic role of His32 in DsbA stability.
    Guddat LW, Bardwell JC, Glockshuber R, Huber-Wunderlich M, Zander T, Martin JL.
    Protein Sci; 1997 Sep 01; 6(9):1893-900. PubMed ID: 9300489
    [Abstract] [Full Text] [Related]

  • 4. Structure of reduced DsbA from Escherichia coli in solution.
    Schirra HJ, Renner C, Czisch M, Huber-Wunderlich M, Holak TA, Glockshuber R.
    Biochemistry; 1998 May 05; 37(18):6263-76. PubMed ID: 9572841
    [Abstract] [Full Text] [Related]

  • 5. Conversion of a catalytic into a structural disulfide bond by circular permutation.
    Hennecke J, Glockshuber R.
    Biochemistry; 1998 Dec 15; 37(50):17590-7. PubMed ID: 9860875
    [Abstract] [Full Text] [Related]

  • 6. The uncharged surface features surrounding the active site of Escherichia coli DsbA are conserved and are implicated in peptide binding.
    Guddat LW, Bardwell JC, Zander T, Martin JL.
    Protein Sci; 1997 Jun 15; 6(6):1148-56. PubMed ID: 9194175
    [Abstract] [Full Text] [Related]

  • 7. Structure of circularly permuted DsbA(Q100T99): preserved global fold and local structural adjustments.
    Manjasetty BA, Hennecke J, Glockshuber R, Heinemann U.
    Acta Crystallogr D Biol Crystallogr; 2004 Feb 15; 60(Pt 2):304-9. PubMed ID: 14747707
    [Abstract] [Full Text] [Related]

  • 8. Determination of the DeltapKa between the active site cysteines of thioredoxin and DsbA.
    Carvalho AT, Fernandes PA, Ramos MJ.
    J Comput Chem; 2006 Jun 15; 27(8):966-75. PubMed ID: 16586531
    [Abstract] [Full Text] [Related]

  • 9. On the non-respect of the thermodynamic cycle by DsbA variants.
    Moutiez M, Burova TV, Haertlé T, Quéméneur E.
    Protein Sci; 1999 Jan 15; 8(1):106-12. PubMed ID: 10210189
    [Abstract] [Full Text] [Related]

  • 10. Quenching of tryptophan fluorescence by the active-site disulfide bridge in the DsbA protein from Escherichia coli.
    Hennecke J, Sillen A, Huber-Wunderlich M, Engelborghs Y, Glockshuber R.
    Biochemistry; 1997 May 27; 36(21):6391-400. PubMed ID: 9174355
    [Abstract] [Full Text] [Related]

  • 11. Structure of TcpG, the DsbA protein folding catalyst from Vibrio cholerae.
    Hu SH, Peek JA, Rattigan E, Taylor RK, Martin JL.
    J Mol Biol; 1997 Apr 25; 268(1):137-46. PubMed ID: 9149147
    [Abstract] [Full Text] [Related]

  • 12. Structure, dynamics and electrostatics of the active site of glutaredoxin 3 from Escherichia coli: comparison with functionally related proteins.
    Foloppe N, Sagemark J, Nordstrand K, Berndt KD, Nilsson L.
    J Mol Biol; 2001 Jul 06; 310(2):449-70. PubMed ID: 11428900
    [Abstract] [Full Text] [Related]

  • 13. Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm.
    Jonda S, Huber-Wunderlich M, Glockshuber R, Mössner E.
    EMBO J; 1999 Jun 15; 18(12):3271-81. PubMed ID: 10369668
    [Abstract] [Full Text] [Related]

  • 14. Structural and biochemical characterization of Xylella fastidiosa DsbA family members: new insights into the enzyme-substrate interaction.
    Rinaldi FC, Meza AN, Guimarães BG.
    Biochemistry; 2009 Apr 21; 48(15):3508-18. PubMed ID: 19245227
    [Abstract] [Full Text] [Related]

  • 15. Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases.
    Mössner E, Huber-Wunderlich M, Glockshuber R.
    Protein Sci; 1998 May 21; 7(5):1233-44. PubMed ID: 9605329
    [Abstract] [Full Text] [Related]

  • 16. Snapshots of DsbA in action: detection of proteins in the process of oxidative folding.
    Kadokura H, Tian H, Zander T, Bardwell JC, Beckwith J.
    Science; 2004 Jan 23; 303(5657):534-7. PubMed ID: 14739460
    [Abstract] [Full Text] [Related]

  • 17. [Study on disulfide bond formation protein A in Escherichia coli].
    Luo M, Guan YX, Yao SJ.
    Sheng Wu Gong Cheng Xue Bao; 2007 Jan 23; 23(1):7-15. PubMed ID: 17366881
    [Abstract] [Full Text] [Related]

  • 18. The conserved cis-Pro39 residue plays a crucial role in the proper positioning of the catalytic base Asp38 in ketosteroid isomerase from Comamonas testosteroni.
    Nam GH, Cha SS, Yun YS, Oh YH, Hong BH, Lee HS, Choi KY.
    Biochem J; 2003 Oct 15; 375(Pt 2):297-305. PubMed ID: 12852789
    [Abstract] [Full Text] [Related]

  • 19. Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles.
    Ladenstein R, Ren B.
    FEBS J; 2006 Sep 15; 273(18):4170-85. PubMed ID: 16930136
    [Abstract] [Full Text] [Related]

  • 20. The influence of His94 and Pro149 in modulating the activity of V. cholerae DsbA.
    Blank J, Kupke T, Lowe E, Barth P, Freedman RB, Ruddock LW.
    Antioxid Redox Signal; 2003 Aug 15; 5(4):359-66. PubMed ID: 13678522
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.