These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


193 related items for PubMed ID: 10213594

  • 1. Modulation of transducin GTPase activity by chimeric RGS16 and RGS9 regulators of G protein signaling and the effector molecule.
    McEntaffer RL, Natochin M, Artemyev NO.
    Biochemistry; 1999 Apr 20; 38(16):4931-7. PubMed ID: 10213594
    [Abstract] [Full Text] [Related]

  • 2. Mutation R238E in transducin-alpha yields a GTPase and effector-deficient, but not dominant-negative, G-protein alpha-subunit.
    Barren B, Natochin M, Artemyev NO.
    Mol Vis; 2006 May 12; 12():492-8. PubMed ID: 16735989
    [Abstract] [Full Text] [Related]

  • 3. The alpha-helical domain of Galphat determines specific interaction with regulator of G protein signaling 9.
    Skiba NP, Yang CS, Huang T, Bae H, Hamm HE.
    J Biol Chem; 1999 Mar 26; 274(13):8770-8. PubMed ID: 10085118
    [Abstract] [Full Text] [Related]

  • 4. Regulation of transducin GTPase activity by human retinal RGS.
    Natochin M, Granovsky AE, Artemyev NO.
    J Biol Chem; 1997 Jul 11; 272(28):17444-9. PubMed ID: 9211888
    [Abstract] [Full Text] [Related]

  • 5. The effector enzyme regulates the duration of G protein signaling in vertebrate photoreceptors by increasing the affinity between transducin and RGS protein.
    Skiba NP, Hopp JA, Arshavsky VY.
    J Biol Chem; 2000 Oct 20; 275(42):32716-20. PubMed ID: 10973941
    [Abstract] [Full Text] [Related]

  • 6. Functional mapping of interacting regions of the photoreceptor phosphodiesterase (PDE6) γ-subunit with PDE6 catalytic dimer, transducin, and regulator of G-protein signaling9-1 (RGS9-1).
    Zhang XJ, Gao XZ, Yao W, Cote RH.
    J Biol Chem; 2012 Jul 27; 287(31):26312-20. PubMed ID: 22665478
    [Abstract] [Full Text] [Related]

  • 7. Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 A.
    Slep KC, Kercher MA, He W, Cowan CW, Wensel TG, Sigler PB.
    Nature; 2001 Feb 22; 409(6823):1071-7. PubMed ID: 11234020
    [Abstract] [Full Text] [Related]

  • 8. RGS9-G beta 5 substrate selectivity in photoreceptors. Opposing effects of constituent domains yield high affinity of RGS interaction with the G protein-effector complex.
    Skiba NP, Martemyanov KA, Elfenbein A, Hopp JA, Bohm A, Simonds WF, Arshavsky VY.
    J Biol Chem; 2001 Oct 05; 276(40):37365-72. PubMed ID: 11495924
    [Abstract] [Full Text] [Related]

  • 9. Activation of transducin guanosine triphosphatase by two proteins of the RGS family.
    Nekrasova ER, Berman DM, Rustandi RR, Hamm HE, Gilman AG, Arshavsky VY.
    Biochemistry; 1997 Jun 24; 36(25):7638-43. PubMed ID: 9201904
    [Abstract] [Full Text] [Related]

  • 10. Binding of transducin to light-activated rhodopsin prevents transducin interaction with the rod cGMP phosphodiesterase gamma-subunit.
    Artemyev NO.
    Biochemistry; 1997 Apr 08; 36(14):4188-93. PubMed ID: 9100013
    [Abstract] [Full Text] [Related]

  • 11. Modules in the photoreceptor RGS9-1.Gbeta 5L GTPase-accelerating protein complex control effector coupling, GTPase acceleration, protein folding, and stability.
    He W, Lu L, Zhang X, El-Hodiri HM, Chen CK, Slep KC, Simon MI, Jamrich M, Wensel TG.
    J Biol Chem; 2000 Nov 24; 275(47):37093-100. PubMed ID: 10978345
    [Abstract] [Full Text] [Related]

  • 12. Mutational analysis of the Asn residue essential for RGS protein binding to G-proteins.
    Natochin M, McEntaffer RL, Artemyev NO.
    J Biol Chem; 1998 Mar 20; 273(12):6731-5. PubMed ID: 9506972
    [Abstract] [Full Text] [Related]

  • 13. Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1.
    Chen CK, Burns ME, He W, Wensel TG, Baylor DA, Simon MI.
    Nature; 2000 Feb 03; 403(6769):557-60. PubMed ID: 10676965
    [Abstract] [Full Text] [Related]

  • 14. A single mutation Asp229 --> Ser confers upon Gs alpha the ability to interact with regulators of G protein signaling.
    Natochin M, Artemyev NO.
    Biochemistry; 1998 Sep 29; 37(39):13776-80. PubMed ID: 9753466
    [Abstract] [Full Text] [Related]

  • 15. RGS9, a GTPase accelerator for phototransduction.
    He W, Cowan CW, Wensel TG.
    Neuron; 1998 Jan 29; 20(1):95-102. PubMed ID: 9459445
    [Abstract] [Full Text] [Related]

  • 16. The GTPase activating factor for transducin in rod photoreceptors is the complex between RGS9 and type 5 G protein beta subunit.
    Makino ER, Handy JW, Li T, Arshavsky VY.
    Proc Natl Acad Sci U S A; 1999 Mar 02; 96(5):1947-52. PubMed ID: 10051575
    [Abstract] [Full Text] [Related]

  • 17. Noncatalytic domains of RGS9-1.Gbeta 5L play a decisive role in establishing its substrate specificity.
    Martemyanov KA, Arshavsky VY.
    J Biol Chem; 2002 Sep 06; 277(36):32843-8. PubMed ID: 12093815
    [Abstract] [Full Text] [Related]

  • 18. Interaction sites of the C-terminal region of the cGMP phosphodiesterase inhibitory subunit with the GDP-bound transducin alpha-subunit.
    Liu Y, Arshavsky VY, Ruoho AE.
    Biochem J; 1999 Jan 15; 337 ( Pt 2)(Pt 2):281-8. PubMed ID: 9882626
    [Abstract] [Full Text] [Related]

  • 19. Kinetic mechanism of RGS9-1 potentiation by R9AP.
    Baker SA, Martemyanov KA, Shavkunov AS, Arshavsky VY.
    Biochemistry; 2006 Sep 05; 45(35):10690-7. PubMed ID: 16939221
    [Abstract] [Full Text] [Related]

  • 20. The retinal specific protein RGS-r competes with the gamma subunit of cGMP phosphodiesterase for the alpha subunit of transducin and facilitates signal termination.
    Wieland T, Chen CK, Simon MI.
    J Biol Chem; 1997 Apr 04; 272(14):8853-6. PubMed ID: 9083000
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.