These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


483 related items for PubMed ID: 10215421

  • 21. The role of actin, actomyosin and microtubules in defining cell shape during the differentiation of Naegleria amebae into flagellates.
    Walsh CJ.
    Eur J Cell Biol; 2007 Feb; 86(2):85-98. PubMed ID: 17189659
    [Abstract] [Full Text] [Related]

  • 22. Regulation of PGE(2) and PGI(2) release from human umbilical vein endothelial cells by actin cytoskeleton.
    Sawyer SJ, Norvell SM, Ponik SM, Pavalko FM.
    Am J Physiol Cell Physiol; 2001 Sep; 281(3):C1038-45. PubMed ID: 11502582
    [Abstract] [Full Text] [Related]

  • 23. A new model of reticulopodial motility and shape: evidence for a microtubule-based motor and an actin skeleton.
    Travis JL, Bowser SS.
    Cell Motil Cytoskeleton; 1986 Sep; 6(1):2-14. PubMed ID: 3698107
    [Abstract] [Full Text] [Related]

  • 24. PKC-dependent stimulation of EAAT3 glutamate transporter does not require the integrity of actin cytoskeleton.
    Bianchi MG, Rotoli BM, Dall'Asta V, Gazzola GC, Gatti R, Bussolati O.
    Neurochem Int; 2006 Apr; 48(5):341-9. PubMed ID: 16417946
    [Abstract] [Full Text] [Related]

  • 25. Dissection of keratin dynamics: different contributions of the actin and microtubule systems.
    Wöll S, Windoffer R, Leube RE.
    Eur J Cell Biol; 2005 Mar; 84(2-3):311-28. PubMed ID: 15819410
    [Abstract] [Full Text] [Related]

  • 26. Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles.
    Aplin A, Jasionowski T, Tuttle DL, Lenk SE, Dunn WA.
    J Cell Physiol; 1992 Sep; 152(3):458-66. PubMed ID: 1506410
    [Abstract] [Full Text] [Related]

  • 27. [The effect of glutoxim on Na+ transport in frog skin: the role of cytoskeleton].
    Mel'nitskaia AV, Krutetskaia ZI, Lebedev OE, Butov SN, Krutetskaia NI, Antonov VG.
    Tsitologiia; 2012 Sep; 54(2):143-8. PubMed ID: 22590927
    [Abstract] [Full Text] [Related]

  • 28. Microfilaments in cellular and developmental processes.
    Wessells NK, Spooner BS, Ash JF, Bradley MO, Luduena MA, Taylor EL, Wrenn JT, Yamada K.
    Science; 1971 Jan 15; 171(3967):135-43. PubMed ID: 5538822
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Interaction of microtubules with peroxisomes. Tubular and spherical peroxisomes in HepG2 cells and their alterations induced by microtubule-active drugs.
    Schrader M, Burkhardt JK, Baumgart E, Lüers G, Spring H, Völkl A, Fahimi HD.
    Eur J Cell Biol; 1996 Jan 15; 69(1):24-35. PubMed ID: 8825021
    [Abstract] [Full Text] [Related]

  • 31. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study.
    Rotsch C, Radmacher M.
    Biophys J; 2000 Jan 15; 78(1):520-35. PubMed ID: 10620315
    [Abstract] [Full Text] [Related]

  • 32. Investigating cytoskeletal function in chloroplast protrusion formation in the arctic-alpine plant Oxyria digyna.
    Holzinger A, Wasteneys GO, Lütz C.
    Plant Biol (Stuttg); 2007 May 15; 9(3):400-10. PubMed ID: 17236103
    [Abstract] [Full Text] [Related]

  • 33. Latrunculins--novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison with cytochalasin D.
    Spector I, Shochet NR, Blasberger D, Kashman Y.
    Cell Motil Cytoskeleton; 1989 May 15; 13(3):127-44. PubMed ID: 2776221
    [Abstract] [Full Text] [Related]

  • 34. Evidence that actin and myosin are involved in the poleward flux of tubulin in metaphase kinetochore microtubules of crane-fly spermatocytes.
    Silverman-Gavrila RV, Forer A.
    J Cell Sci; 2000 Feb 15; 113 ( Pt 4)():597-609. PubMed ID: 10652253
    [Abstract] [Full Text] [Related]

  • 35. Microfilament-disrupting agent latrunculin A induces and increased number of fenestrae in rat liver sinusoidal endothelial cells: comparison with cytochalasin B.
    Braet F, De Zanger R, Jans D, Spector I, Wisse E.
    Hepatology; 1996 Sep 15; 24(3):627-35. PubMed ID: 8781335
    [Abstract] [Full Text] [Related]

  • 36. Role of microfilaments and microtubules in the invasion of INT-407 cells by Campylobacter jejuni.
    Biswas D, Itoh K, Sasakawa C.
    Microbiol Immunol; 2003 Sep 15; 47(6):469-73. PubMed ID: 12906108
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Reorganization of microfilaments in protonemal tip cells of the moss Ceratodon purpureus during the phototropic response.
    Meske V, Hartmann E.
    Protoplasma; 1995 Sep 15; 188(1-2):59-69. PubMed ID: 11541040
    [Abstract] [Full Text] [Related]

  • 39. Transport of neurofilaments in growing axons requires microtubules but not actin filaments.
    Francis F, Roy S, Brady ST, Black MM.
    J Neurosci Res; 2005 Feb 15; 79(4):442-50. PubMed ID: 15635594
    [Abstract] [Full Text] [Related]

  • 40. The role of actin filaments and microtubules in hepatocyte spheroid self-assembly.
    Tzanakakis ES, Hansen LK, Hu WS.
    Cell Motil Cytoskeleton; 2001 Mar 15; 48(3):175-89. PubMed ID: 11223949
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 25.