These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


327 related items for PubMed ID: 10217538

  • 1. Inhibitory effect of 4-aminopyridine on responses of the basilar artery to nitric oxide.
    Sobey CG, Faraci FM.
    Br J Pharmacol; 1999 Mar; 126(6):1437-43. PubMed ID: 10217538
    [Abstract] [Full Text] [Related]

  • 2. Role of potassium channels in the nitrergic nerve stimulation-induced vasodilatation in the guinea-pig isolated basilar artery.
    Jiang F, Li CG, Rand MJ.
    Br J Pharmacol; 1998 Jan; 123(1):106-12. PubMed ID: 9484860
    [Abstract] [Full Text] [Related]

  • 3. Nitric oxide and sodium nitroprusside-induced relaxation of the human umbilical artery.
    Lovren F, Triggle C.
    Br J Pharmacol; 2000 Oct; 131(3):521-9. PubMed ID: 11015303
    [Abstract] [Full Text] [Related]

  • 4. Effect of nitric oxide and potassium channel agonists and inhibitors on basilar artery diameter.
    Sobey CG, Faraci FM.
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H256-62. PubMed ID: 9038945
    [Abstract] [Full Text] [Related]

  • 5. A xanthine-based KMUP-1 with cyclic GMP enhancing and K(+) channels opening activities in rat aortic smooth muscle.
    Wu BN, Lin RJ, Lin CY, Shen KP, Chiang LC, Chen IJ.
    Br J Pharmacol; 2001 Sep; 134(2):265-74. PubMed ID: 11564644
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Tonic inhibitory action by nitric oxide on spontaneous mechanical activity in rat proximal colon: involvement of cyclic GMP and apamin-sensitive K+ channels.
    Mulè F, D'Angelo S, Serio R.
    Br J Pharmacol; 1999 May; 127(2):514-20. PubMed ID: 10385253
    [Abstract] [Full Text] [Related]

  • 8. Role of Ca(2+)-activated K+ channels in acetylcholine-induced dilatation of the basilar artery in vivo.
    Kitazono T, Ibayashi S, Nagao T, Fujii K, Fujishima M.
    Br J Pharmacol; 1997 Jan; 120(1):102-6. PubMed ID: 9117083
    [Abstract] [Full Text] [Related]

  • 9. Mechanisms that produce nitric oxide-mediated relaxation of cerebral arteries during atherosclerosis.
    Didion SP, Heistad DD, Faraci FM.
    Stroke; 2001 Mar; 32(3):761-6. PubMed ID: 11239199
    [Abstract] [Full Text] [Related]

  • 10. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D, Simonsen U, Hernández M, García-Sacristán A.
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [Abstract] [Full Text] [Related]

  • 11. Role of voltage-dependent potassium channels and myo-endothelial gap junctions in 4-aminopyridine-induced inhibition of acetylcholine relaxation in rat carotid artery.
    Gupta PK, Subramani J, Leo MD, Sikarwar AS, Parida S, Prakash VR, Mishra SK.
    Eur J Pharmacol; 2008 Sep 04; 591(1-3):171-6. PubMed ID: 18577383
    [Abstract] [Full Text] [Related]

  • 12. Endothelial mechanisms underlying responses to acetylcholine in the horse deep dorsal penile vein.
    Martínez AC, Prieto D, Hernández M, Rivera L, Recio P, García-Sacristán A, Benedito S.
    Eur J Pharmacol; 2005 May 16; 515(1-3):150-9. PubMed ID: 15894308
    [Abstract] [Full Text] [Related]

  • 13. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed.
    Pimentel AM, Costa CA, Carvalho LC, Brandão RM, Rangel BM, Tano T, Soares de Moura R, Resende AC.
    Vascul Pharmacol; 2007 May 16; 46(5):353-9. PubMed ID: 17258511
    [Abstract] [Full Text] [Related]

  • 14. Relaxation to authentic nitric oxide and SIN-1 in rat isolated mesenteric arteries: variable role for smooth muscle hyperpolarization.
    Plane F, Sampson LJ, Smith JJ, Garland CJ.
    Br J Pharmacol; 2001 Jul 16; 133(5):665-72. PubMed ID: 11429390
    [Abstract] [Full Text] [Related]

  • 15. Redox variants of NO (NO{middle dot} and HNO) elicit vasorelaxation of resistance arteries via distinct mechanisms.
    Favaloro JL, Kemp-Harper BK.
    Am J Physiol Heart Circ Physiol; 2009 May 16; 296(5):H1274-80. PubMed ID: 19252101
    [Abstract] [Full Text] [Related]

  • 16. Endothelium-dependent vasorelaxation independent of nitric oxide and K(+) release in isolated renal arteries of rats.
    Jiang F, Dusting GJ.
    Br J Pharmacol; 2001 Apr 16; 132(7):1558-64. PubMed ID: 11264250
    [Abstract] [Full Text] [Related]

  • 17. Characterization of NS 2028 as a specific inhibitor of soluble guanylyl cyclase.
    Olesen SP, Drejer J, Axelsson O, Moldt P, Bang L, Nielsen-Kudsk JE, Busse R, Mülsch A.
    Br J Pharmacol; 1998 Jan 16; 123(2):299-309. PubMed ID: 9489619
    [Abstract] [Full Text] [Related]

  • 18. Comparison of two soluble guanylyl cyclase inhibitors, methylene blue and ODQ, on sodium nitroprusside-induced relaxation in guinea-pig trachea.
    Hwang TL, Wu CC, Teng CM.
    Br J Pharmacol; 1998 Nov 16; 125(6):1158-63. PubMed ID: 9863642
    [Abstract] [Full Text] [Related]

  • 19. Smooth muscle membrane potential modulates endothelium-dependent relaxation of rat basilar artery via myo-endothelial gap junctions.
    Allen T, Iftinca M, Cole WC, Plane F.
    J Physiol; 2002 Dec 15; 545(3):975-86. PubMed ID: 12482900
    [Abstract] [Full Text] [Related]

  • 20. Effects of the soluble guanylyl cyclase activator, YC-1, on vascular tone, cyclic GMP levels and phosphodiesterase activity.
    Galle J, Zabel U, Hübner U, Hatzelmann A, Wagner B, Wanner C, Schmidt HH.
    Br J Pharmacol; 1999 May 15; 127(1):195-203. PubMed ID: 10369473
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.