These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


116 related items for PubMed ID: 10220340

  • 1. Arg352 is a major determinant of charge selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel.
    Guinamard R, Akabas MH.
    Biochemistry; 1999 Apr 27; 38(17):5528-37. PubMed ID: 10220340
    [Abstract] [Full Text] [Related]

  • 2. Positive charges at the intracellular mouth of the pore regulate anion conduction in the CFTR chloride channel.
    Aubin CN, Linsdell P.
    J Gen Physiol; 2006 Nov 27; 128(5):535-45. PubMed ID: 17043152
    [Abstract] [Full Text] [Related]

  • 3. Extent of the selectivity filter conferred by the sixth transmembrane region in the CFTR chloride channel pore.
    Gupta J, Lindsell P.
    Mol Membr Biol; 2003 Nov 27; 20(1):45-52. PubMed ID: 12745925
    [Abstract] [Full Text] [Related]

  • 4. Identification of a second blocker binding site at the cytoplasmic mouth of the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    St Aubin CN, Zhou JJ, Linsdell P.
    Mol Pharmacol; 2007 May 27; 71(5):1360-8. PubMed ID: 17293558
    [Abstract] [Full Text] [Related]

  • 5. Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Linsdell P, Evagelidis A, Hanrahan JW.
    Biophys J; 2000 Jun 27; 78(6):2973-82. PubMed ID: 10827976
    [Abstract] [Full Text] [Related]

  • 6. Molecular mechanism of arachidonic acid inhibition of the CFTR chloride channel.
    Zhou JJ, Linsdell P.
    Eur J Pharmacol; 2007 Jun 01; 563(1-3):88-91. PubMed ID: 17397825
    [Abstract] [Full Text] [Related]

  • 7. Maximization of the rate of chloride conduction in the CFTR channel pore by ion-ion interactions.
    Gong X, Linsdell P.
    Arch Biochem Biophys; 2004 Jun 01; 426(1):78-82. PubMed ID: 15130785
    [Abstract] [Full Text] [Related]

  • 8. Evidence that extracellular anions interact with a site outside the CFTR chloride channel pore to modify channel properties.
    Zhou JJ, Linsdell P.
    Can J Physiol Pharmacol; 2009 May 01; 87(5):387-95. PubMed ID: 19448737
    [Abstract] [Full Text] [Related]

  • 9. Channel-lining residues in the M3 membrane-spanning segment of the cystic fibrosis transmembrane conductance regulator.
    Akabas MH.
    Biochemistry; 1998 Sep 01; 37(35):12233-40. PubMed ID: 9724537
    [Abstract] [Full Text] [Related]

  • 10. Locating the anion-selectivity filter of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel.
    Cheung M, Akabas MH.
    J Gen Physiol; 1997 Mar 01; 109(3):289-99. PubMed ID: 9089437
    [Abstract] [Full Text] [Related]

  • 11. Asymmetric structure of the cystic fibrosis transmembrane conductance regulator chloride channel pore suggested by mutagenesis of the twelfth transmembrane region.
    Gupta J, Evagelidis A, Hanrahan JW, Linsdell P.
    Biochemistry; 2001 Jun 05; 40(22):6620-7. PubMed ID: 11380256
    [Abstract] [Full Text] [Related]

  • 12. Anion conductance selectivity mechanism of the CFTR chloride channel.
    Linsdell P.
    Biochim Biophys Acta; 2016 Apr 05; 1858(4):740-7. PubMed ID: 26779604
    [Abstract] [Full Text] [Related]

  • 13. A single P-loop glutamate point mutation to either lysine or arginine switches the cation-anion selectivity of the CNGA2 channel.
    Qu W, Moorhouse AJ, Chandra M, Pierce KD, Lewis TM, Barry PH.
    J Gen Physiol; 2006 Apr 05; 127(4):375-89. PubMed ID: 16533895
    [Abstract] [Full Text] [Related]

  • 14. Relationship between anion binding and anion permeability revealed by mutagenesis within the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Linsdell P.
    J Physiol; 2001 Feb 15; 531(Pt 1):51-66. PubMed ID: 11179391
    [Abstract] [Full Text] [Related]

  • 15. Mechanism of direct bicarbonate transport by the CFTR anion channel.
    Tang L, Fatehi M, Linsdell P.
    J Cyst Fibros; 2009 Mar 15; 8(2):115-21. PubMed ID: 19019741
    [Abstract] [Full Text] [Related]

  • 16. Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel.
    Linsdell P.
    Exp Physiol; 2006 Jan 15; 91(1):123-9. PubMed ID: 16157656
    [Abstract] [Full Text] [Related]

  • 17. Discovery of pyrrolo[2,3-b]pyrazines derivatives as submicromolar affinity activators of wild type, G551D, and F508del cystic fibrosis transmembrane conductance regulator chloride channels.
    Noel S, Faveau C, Norez C, Rogier C, Mettey Y, Becq F.
    J Pharmacol Exp Ther; 2006 Oct 15; 319(1):349-59. PubMed ID: 16829626
    [Abstract] [Full Text] [Related]

  • 18. Base treatment corrects defects due to misfolding of mutant cystic fibrosis transmembrane conductance regulator.
    Namkung W, Kim KH, Lee MG.
    Gastroenterology; 2005 Dec 15; 129(6):1979-90. PubMed ID: 16344066
    [Abstract] [Full Text] [Related]

  • 19. Selective activation of cystic fibrosis transmembrane conductance regulator Cl- and HCO3- conductances.
    Reddy MM, Quinton PM.
    JOP; 2001 Jul 15; 2(4 Suppl):212-8. PubMed ID: 11875262
    [Abstract] [Full Text] [Related]

  • 20. Direct block of the cystic fibrosis transmembrane conductance regulator Cl(-) channel by niflumic acid.
    Scott-Ward TS, Li H, Schmidt A, Cai Z, Sheppard DN.
    Mol Membr Biol; 2004 Jul 15; 21(1):27-38. PubMed ID: 14668136
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.