These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Effect of aurovertin on energy transfer reactions in Rhodospirillum rubrum chromatophores. Ravizzini RA, Lescano WI, Vallejos RH. FEBS Lett; 1975 Oct 15; 58(1):285-8. PubMed ID: 131702 [No Abstract] [Full Text] [Related]
6. Photosynthetic regeneration of ATP using bacterial chromatophores. Pace GW, Yang HS, Tannenbaum SR, Archer MC. Biotechnol Bioeng; 1976 Oct 15; 18(10):1413-23. PubMed ID: 822897 [Abstract] [Full Text] [Related]
7. Photoinactivation of photophosphorylation and dark ATPase in Rhodospirillum rubrum chromatophores. Slooten L, Sybesma C. Biochim Biophys Acta; 1976 Dec 06; 449(3):565-80. PubMed ID: 11818 [Abstract] [Full Text] [Related]
8. Naphxhylmercaptobenzoquinone, a new inhibitor of photophosphorylation in Rhodospirillum rubrum chromatophores at the level of ubiquinone. Gromet-Elhanan Z. Biochem Biophys Res Commun; 1976 Nov 08; 73(1):13-8. PubMed ID: 826250 [No Abstract] [Full Text] [Related]
9. Role of bound ADP in photosynthetic ATP formation by chromatophores from Rhodospirillum rubrum. Yammamoto N, Yoshimura S, Higuti T, Nishikawa K, Horio T. J Biochem; 1972 Dec 08; 72(6):1397-406. PubMed ID: 4198252 [No Abstract] [Full Text] [Related]
10. Bound nucleotides and phosphorylation in Rhodospirillum rubrum. Harris DA, Baltscheffsky M. Biochem Biophys Res Commun; 1979 Feb 28; 86(4):1248-55. PubMed ID: 155454 [No Abstract] [Full Text] [Related]
11. Changes in the fluorescence of atebrin and of anilino-naphthalene sulfonate reflecting two different light-induced processes in Rhodospirillum rubrum chromatophores. Gromet-Elhanan Z. Eur J Biochem; 1972 Jan 31; 25(1):84-8. PubMed ID: 4623434 [No Abstract] [Full Text] [Related]
12. Coupling of ATP hydrolysis to phosphate uptake in Rhodospirillum rubrum chromatophores under the influence of Ca2+ and Mg2+. Montero-Lomelí M, Martins OB, Dreyfus G. J Biol Chem; 1989 Dec 15; 264(35):21014-7. PubMed ID: 2512287 [Abstract] [Full Text] [Related]
13. Formation and decomposition of pyrophosphate related to bacterial photophosphorylation. Nishikawa K, Hosoi K, Suzuki J, Yoshimura S, Horio T. J Biochem; 1973 Mar 15; 73(3):537-53. PubMed ID: 4353266 [No Abstract] [Full Text] [Related]
14. Light-dependent ATP formation in a non-phototrophic mutant of Rhodospirillum rubrum deficient in oxygen photoreduction. dell Valle-Tascón S, Giménez-Gallego G, Ramírez JM. Biochem Biophys Res Commun; 1975 Sep 16; 66(2):514-9. PubMed ID: 810144 [No Abstract] [Full Text] [Related]
15. Demonstration of acid-base phosphorylation in chromatophores in the presence of a K+ diffusion potential. Leiser M, Gromet-Elhanan Z. FEBS Lett; 1974 Aug 01; 43(3):267-70. PubMed ID: 4213021 [No Abstract] [Full Text] [Related]
17. [Polyphosphate biosynthesis in Rhodospirillum rubrum chromatophores]. Shadi A, Mansurova SE, Tsydendambaev VD, Kulaev IS. Mikrobiologiia; 1976 Aug 01; 45(2):333-6. PubMed ID: 180387 [Abstract] [Full Text] [Related]
18. The effect of electron donors and acceptors on light-induced absorbance changes and photophosphorylation in Rhodospirillum rubrum chromatophores. Silberstein BR, Epel BL, Malkin S, Gromet-Elhanan Z. Eur J Biochem; 1977 Oct 17; 80(1):135-41. PubMed ID: 411652 [Abstract] [Full Text] [Related]
19. Postillumination adenosine triphosphate synthesis in Rhodospirillum rubrum chromatophores. I. Conditions for maximal yields. Leiser M, Gromet-Elhanan Z. J Biol Chem; 1975 Jan 10; 250(1):84-9. PubMed ID: 237896 [Abstract] [Full Text] [Related]
20. Inhibition of energy conservation reactions in chromatophores of Rhodospirillum rubrum by antibiotics. Lucero H, Lescano WI, Vallejos RH. Arch Biochem Biophys; 1978 Feb 10; 186(1):9-14. PubMed ID: 147053 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]