These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
189 related items for PubMed ID: 1031
1. ATP synthesis catalyzed by purified DCCD-sensitive ATPase incorporated into reconstituted purple membrane vesicles. Yoshida M, Sone N, Hirata H, Kagawa Y. Biochem Biophys Res Commun; 1975 Dec 15; 67(4):1295-300. PubMed ID: 1031 [No Abstract] [Full Text] [Related]
2. Light-induced membrane-potential increase, ATP synthesis, and proton uptake in Halobacterium halobium, R1mR catalyzed by halorhodopsin: Effects of N,N'-dicyclohexylcarbodiimide, triphenyltin chloride, and 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847). Mukohata Y, Kaji Y. Arch Biochem Biophys; 1981 Jan 15; 206(1):72-6. PubMed ID: 6260033 [No Abstract] [Full Text] [Related]
3. Carbodiimide-binding protein of H+-translocating ATPase and inhibition of H+ conduction by dicyclohexylcarbodiimide. Sone N, Yoshida M, Hirata H, Kagawa Y. J Biochem; 1979 Feb 15; 85(2):503-9. PubMed ID: 33978 [Abstract] [Full Text] [Related]
5. Formation of ATP by the adenosine triphosphatase complex from spinach chloroplasts reconstituted together with bacteriorhodopsin. Winget GD, Kanner N, Racker E. Biochim Biophys Acta; 1977 Jun 09; 460(3):490-9. PubMed ID: 141938 [Abstract] [Full Text] [Related]
6. ATP synthesis by an artificial proton gradient in right-side-out membrane vesicles of Escherichia coli. Tsuchiya T, Rosen BP. Biochem Biophys Res Commun; 1976 Jan 26; 68(2):497-502. PubMed ID: 3178 [No Abstract] [Full Text] [Related]
7. Proton translocation by ATPase and bacteriorhodopsin. Kagawa Y, Ohno K, Yoshida M, Takeuchi Y, Sone N. Fed Proc; 1977 May 26; 36(6):1815-8. PubMed ID: 15875 [Abstract] [Full Text] [Related]
8. Solubilization and functional reconstitution of the DCCD-sensitive Na+/H(+)-antiporter from Halobacterium halobium. Konishi T, Murakami N. Biochem Biophys Res Commun; 1990 Aug 16; 170(3):1339-45. PubMed ID: 2167674 [Abstract] [Full Text] [Related]
9. ATP synthesis in Halobacterium saccharovorum: evidence that synthesis may be catalysed by an F0F1-ATP synthase. Hochstein LI. FEMS Microbiol Lett; 1992 Oct 01; 76(1-2):155-9. PubMed ID: 11537859 [Abstract] [Full Text] [Related]
10. DCCD-sensitive Na+-transport in the membrane vesicles of Halobacterium halobium. Murakami N, Konishi T. J Biochem; 1988 Feb 01; 103(2):231-6. PubMed ID: 3372488 [Abstract] [Full Text] [Related]
11. A mutant ATP synthetase of Escherichia coli with an altered sensitivity to N,N' -dicyclohexylcarbodiimide: characterization in native membranes and reconstituted proteoliposomes. Friedl P, Schmid BI, Schairer HU. Eur J Biochem; 1977 Mar 01; 73(2):461-8. PubMed ID: 14831 [Abstract] [Full Text] [Related]
12. DCCD-sensitive ATPase (TF0 . F1) from a thermophilic bacterium: purification, dissociation into functional subunits, and reconstitution into vesicles capable of energy transformation. Kagawa Y, Sone N. Methods Enzymol; 1979 Mar 01; 55():364-72. PubMed ID: 156844 [No Abstract] [Full Text] [Related]
13. Net ATP synthesis in H+ -atpase macroliposomes by an external electric field. Rögner M, Ohno K, Hamamoto T, Sone N, Kagawa Y. Biochem Biophys Res Commun; 1979 Nov 14; 91(1):362-7. PubMed ID: 42395 [No Abstract] [Full Text] [Related]
14. Inhibition by dicyclohexylcarbodiimide of ATP synthesis in isolated rat hepatocytes. Emami S, Lodola A, Partis M, Sanadi DR. Biosci Rep; 1984 Mar 14; 4(3):189-94. PubMed ID: 6232961 [Abstract] [Full Text] [Related]
15. Incorporation of purple membrane into vesicles capable of light-stimulated ATP synthesis. Kagawa Y. Methods Enzymol; 1979 Mar 14; 55():777-80. PubMed ID: 37410 [No Abstract] [Full Text] [Related]
16. Purification and properties of a dicyclohexylcarbodiimide-sensitive adenosine triphosphatase from a thermophilic bacterium. Sone N, Yoshida M, Hirata H, Kagawa Y. J Biol Chem; 1975 Oct 10; 250(19):7917-23. PubMed ID: 240843 [Abstract] [Full Text] [Related]
17. Adenosine 5'-triphosphate synthesis energized by an artificially imposed membrane potential in membrane vesicles of Escherichia coli. Tsuchiya T, Rosen BP. J Bacteriol; 1976 Jul 10; 127(1):154-61. PubMed ID: 6430 [Abstract] [Full Text] [Related]
18. Restoration of oxidative phosphorylation by purified N,N'-dicyclohexylcarbodiimide-sensitive latent adenosinetriphosphatase from Mycobacterium phlei. Lee SH, Cohen NS, Brodie AF. Proc Natl Acad Sci U S A; 1976 Sep 10; 73(9):3050-3. PubMed ID: 135258 [Abstract] [Full Text] [Related]
19. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of N,N'-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient. Michel H, Oesterhelt D. Biochemistry; 1980 Sep 30; 19(20):4607-14. PubMed ID: 7426619 [Abstract] [Full Text] [Related]
20. Active proton uptake in lipid vesicles reconstituted with the purified yeast plasma membrane ATPase. Fluorescence quenching of 9-amino-6-chloro-2-methoxyacridine. Dufour JP, Goffeau A, Tsong TY. J Biol Chem; 1982 Aug 25; 257(16):9365-71. PubMed ID: 6213606 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]