These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1128 related items for PubMed ID: 10322059

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Acute activation and inactivation of macaque frontal eye field with GABA-related drugs.
    Dias EC, Kiesau M, Segraves MA.
    J Neurophysiol; 1995 Dec; 74(6):2744-8. PubMed ID: 8747229
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Effect of reversible inactivation of macaque lateral intraparietal area on visual and memory saccades.
    Li CS, Mazzoni P, Andersen RA.
    J Neurophysiol; 1999 Apr; 81(4):1827-38. PubMed ID: 10200217
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Bilateral saccadic deficits following large and reversible inactivation of unilateral frontal eye field.
    Peel TR, Johnston K, Lomber SG, Corneil BD.
    J Neurophysiol; 2014 Jan; 111(2):415-33. PubMed ID: 24155010
    [Abstract] [Full Text] [Related]

  • 9. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA, Mintun MA, Kwee S, Wiseman MB, Brown DL, Rosenberg DR, Carl JR.
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [Abstract] [Full Text] [Related]

  • 10. Neural mechanisms underlying target selection with saccadic eye movements.
    Schiller PH, Tehovnik EJ.
    Prog Brain Res; 2005 Jan; 149():157-71. PubMed ID: 16226583
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. A distinct contribution of the frontal eye field to the visual representation of saccadic targets.
    Noudoost B, Clark KL, Moore T.
    J Neurosci; 2014 Mar 05; 34(10):3687-98. PubMed ID: 24599467
    [Abstract] [Full Text] [Related]

  • 15. Suppression of visually and memory-guided saccades induced by electrical stimulation of the monkey frontal eye field. I. Suppression of ipsilateral saccades.
    Izawa Y, Suzuki H, Shinoda Y.
    J Neurophysiol; 2004 Oct 05; 92(4):2248-60. PubMed ID: 15381744
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Effect of inactivation of the cortical frontal eye field on saccades generated in a choice response paradigm.
    Keller EL, Lee KM, Park SW, Hill JA.
    J Neurophysiol; 2008 Nov 05; 100(5):2726-37. PubMed ID: 18784274
    [Abstract] [Full Text] [Related]

  • 18. Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: comparison with supplementary eye fields.
    Schall JD.
    J Neurophysiol; 1991 Aug 05; 66(2):559-79. PubMed ID: 1774586
    [Abstract] [Full Text] [Related]

  • 19. The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task.
    Sawaguchi T, Goldman-Rakic PS.
    J Neurophysiol; 1994 Feb 05; 71(2):515-28. PubMed ID: 7909839
    [Abstract] [Full Text] [Related]

  • 20. Visual sensitivity of frontal eye field neurons during the preparation of saccadic eye movements.
    Krock RM, Moore T.
    J Neurophysiol; 2016 Dec 01; 116(6):2882-2891. PubMed ID: 27683894
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 57.