These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
271 related items for PubMed ID: 10322924
1. Melatonin decreases production of hydroxyl radical during cerebral ischemia-reperfusion. Li XJ, Zhang LM, Gu J, Zhang AZ, Sun FY. Zhongguo Yao Li Xue Bao; 1997 Sep; 18(5):394-6. PubMed ID: 10322924 [Abstract] [Full Text] [Related]
2. Effect of melatonin on production of hydroxyl radical and lactate dehydrogenase during hypoxia in rat cortical slices. Li XJ, Gu J, Pan BS, Sun FY. Zhongguo Yao Li Xue Bao; 1999 Mar; 20(3):201-5. PubMed ID: 10452092 [Abstract] [Full Text] [Related]
3. [Hydroxyl radical generation and post-ischemic reperfusion brain damage implications for neuroprotection]. Kanazawa A, Kondo T. No To Shinkei; 1996 Jun; 48(6):567-72. PubMed ID: 8703560 [Abstract] [Full Text] [Related]
4. Evidence for formation of hydroxyl radicals during reperfusion after global cerebral ischaemia in rats using salicylate trapping and microdialysis. Christensen T, Bruhn T, Balchen T, Diemer NH. Neurobiol Dis; 1994 Dec; 1(3):131-8. PubMed ID: 9173992 [Abstract] [Full Text] [Related]
5. Hydroxyl radical production in the cortex and striatum in a rat model of focal cerebral ischemia. Ste-Marie L, Vachon P, Vachon L, Bémeur C, Guertin MC, Montgomery J. Can J Neurol Sci; 2000 May; 27(2):152-9. PubMed ID: 10830350 [Abstract] [Full Text] [Related]
6. Selective brain hypothermia protects against hypoxic-ischemic injury in newborn rats by reducing hydroxyl radical production. Hashimoto T, Yonetani M, Nakamura H. Kobe J Med Sci; 2003 May; 49(3-4):83-91. PubMed ID: 14970751 [Abstract] [Full Text] [Related]
7. [HPLC--detection of hydroxyl radicals in striatum extracellular fluid in rats subjected to reperfusion after cerebral ischemia and the action of vitamin E]. Hu D, Feng YP. Yao Xue Xue Bao; 1993 May; 28(5):337-41. PubMed ID: 8237377 [Abstract] [Full Text] [Related]
8. Hydroxyl radical production and lipid peroxidation parallels selective post-ischemic vulnerability in gerbil brain. Hall ED, Andrus PK, Althaus JS, VonVoigtlander PF. J Neurosci Res; 1993 Jan; 34(1):107-12. PubMed ID: 8380874 [Abstract] [Full Text] [Related]
9. Intestinal ischemia: reperfusion-mediated increase in hydroxyl free radical formation as reported by salicylate hydroxylation. Rose S, Floyd RA, Eneff K, Bühren V, Massion W. Shock; 1994 Jun; 1(6):452-6. PubMed ID: 7735975 [Abstract] [Full Text] [Related]
10. Liver reperfusion-induced decrease in dynamic compliance and increase in airway resistance are ameliorated by preischemic treatment with melatonin through scavenging hydroxyl radicals in rat lungs. Yeh JH, Su CL, Chen CF, Wang D, Wang JJ. Transplant Proc; 2012 May; 44(4):966-9. PubMed ID: 22564598 [Abstract] [Full Text] [Related]
11. In vivo monitoring of .OH generation on jejunal ischemic injury by dialysis technique. Hirata T, Obata T, Yamanaka Y, Uchida Y. Res Commun Mol Pathol Pharmacol; 1996 Aug; 93(2):187-97. PubMed ID: 8884990 [Abstract] [Full Text] [Related]
12. Ascorbic acid radical, superoxide, and hydroxyl radical are detected in reperfusion injury of rat liver using electron spin resonance spectroscopy. Togashi H, Shinzawa H, Yong H, Takahashi T, Noda H, Oikawa K, Kamada H. Arch Biochem Biophys; 1994 Jan; 308(1):1-7. PubMed ID: 8311441 [Abstract] [Full Text] [Related]
13. Hydroxyl radical generation in the cat retina during reperfusion following ischemia. Ophir A, Berenshtein E, Kitrossky N, Berman ER, Photiou S, Rothman Z, Chevion M. Exp Eye Res; 1993 Sep; 57(3):351-7. PubMed ID: 8224022 [Abstract] [Full Text] [Related]
14. Hydroxyl radical formation is greater in striatal core than in penumbra in a rat model of ischemic stroke. Liu S, Liu M, Peterson S, Miyake M, Vallyathan V, Liu KJ. J Neurosci Res; 2003 Mar 15; 71(6):882-8. PubMed ID: 12605415 [Abstract] [Full Text] [Related]
15. On the application of 4-hydroxybenzoic acid as a trapping agent to study hydroxyl radical generation during cerebral ischemia and reperfusion. Liu M, Liu S, Peterson SL, Miyake M, Liu KJ. Mol Cell Biochem; 2002 Mar 15; 234-235(1-2):379-85. PubMed ID: 12162456 [Abstract] [Full Text] [Related]
16. Ischemic preconditioning decreases the reperfusion-related formation of hydroxyl radicals in a rabbit model of regional myocardial ischemia and reperfusion: the role of K(ATP) channels. Raphael J, Drenger B, Rivo J, Berenshtein E, Chevion M, Gozal Y. Free Radic Res; 2005 Jul 15; 39(7):747-54. PubMed ID: 16036354 [Abstract] [Full Text] [Related]
17. Quantitative analysis of hydroxyl radicals in the anterior optic nerve of the cat following transient ischemia. Ophir A, Porges Y. Ophthalmic Surg Lasers; 2001 Jul 15; 32(1):55-62. PubMed ID: 11195744 [Abstract] [Full Text] [Related]
18. Delayed neuronal death prevented by inhibition of increased hydroxyl radical formation in a transient cerebral ischemia. Yamamoto T, Yuki S, Watanabe T, Mitsuka M, Saito KI, Kogure K. Brain Res; 1997 Jul 11; 762(1-2):240-2. PubMed ID: 9262182 [Abstract] [Full Text] [Related]
19. Pretreatment with melatonin exerts anti-inflammatory effects against ischemia/reperfusion injury in a rat middle cerebral artery occlusion stroke model. Pei Z, Cheung RT. J Pineal Res; 2004 Sep 11; 37(2):85-91. PubMed ID: 15298666 [Abstract] [Full Text] [Related]
20. Protective effect of melatonin on injuried cerebral neurons is associated with bcl-2 protein over-expression. Ling X, Zhang LM, Lu SD, Li XJ, Sun FY. Zhongguo Yao Li Xue Bao; 1999 May 11; 20(5):409-14. PubMed ID: 10678086 [Abstract] [Full Text] [Related] Page: [Next] [New Search]