These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


159 related items for PubMed ID: 10329711

  • 21. M.phi 3TII: a new monospecific DNA (cytosine-C5) methyltransferase with pronounced amino acid sequence similarity to a family of adenine-N6-DNA-methyltransferases.
    Noyer-Weidner M, Walter J, Terschüren PA, Chai S, Trautner TA.
    Nucleic Acids Res; 1994 Oct 11; 22(20):4066-72. PubMed ID: 7937131
    [Abstract] [Full Text] [Related]

  • 22. Sequence-specific recognition of cytosine C5 and adenine N6 DNA methyltransferases requires different deformations of DNA.
    Garcia RA, Bustamante CJ, Reich NO.
    Proc Natl Acad Sci U S A; 1996 Jul 23; 93(15):7618-22. PubMed ID: 8755524
    [Abstract] [Full Text] [Related]

  • 23. Changing the target base specificity of the EcoRV DNA methyltransferase by rational de novo protein-design.
    Roth M, Jeltsch A.
    Nucleic Acids Res; 2001 Aug 01; 29(15):3137-44. PubMed ID: 11470870
    [Abstract] [Full Text] [Related]

  • 24. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine.
    Sheikhnejad G, Brank A, Christman JK, Goddard A, Alvarez E, Ford H, Marquez VE, Marasco CJ, Sufrin JR, O'gara M, Cheng X.
    J Mol Biol; 1999 Feb 05; 285(5):2021-34. PubMed ID: 9925782
    [Abstract] [Full Text] [Related]

  • 25. Structure of RsrI methyltransferase, a member of the N6-adenine beta class of DNA methyltransferases.
    Scavetta RD, Thomas CB, Walsh MA, Szegedi S, Joachimiak A, Gumport RI, Churchill ME.
    Nucleic Acids Res; 2000 Oct 15; 28(20):3950-61. PubMed ID: 11024175
    [Abstract] [Full Text] [Related]

  • 26. Probing the DNA interface of the EcoRV DNA-(adenine-N6)-methyltransferase by site-directed mutagenesis, fluorescence spectroscopy, and UV cross-linking.
    Beck C, Jeltsch A.
    Biochemistry; 2002 Dec 03; 41(48):14103-10. PubMed ID: 12450373
    [Abstract] [Full Text] [Related]

  • 27. Design of a new fluorescent cofactor for DNA methyltransferases and sequence-specific labeling of DNA.
    Pljevaljcic G, Pignot M, Weinhold E.
    J Am Chem Soc; 2003 Mar 26; 125(12):3486-92. PubMed ID: 12643710
    [Abstract] [Full Text] [Related]

  • 28. Functional roles of conserved amino acid residues in DNA methyltransferases investigated by site-directed mutagenesis of the EcoRV adenine-N6-methyltransferase.
    Roth M, Helm-Kruse S, Friedrich T, Jeltsch A.
    J Biol Chem; 1998 Jul 10; 273(28):17333-42. PubMed ID: 9651316
    [Abstract] [Full Text] [Related]

  • 29. Functional analysis of conserved motifs in EcoP15I DNA methyltransferase.
    Ahmad I, Rao DN.
    J Mol Biol; 1996 Jun 07; 259(2):229-40. PubMed ID: 8656425
    [Abstract] [Full Text] [Related]

  • 30. Structure of pvu II DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment.
    Gong W, O'Gara M, Blumenthal RM, Cheng X.
    Nucleic Acids Res; 1997 Jul 15; 25(14):2702-15. PubMed ID: 9207015
    [Abstract] [Full Text] [Related]

  • 31. Isolation and characterization of site-specific DNA-methyltransferases from Bacillus coagulans K.
    Svadbina IV, Zelinskaya NV, Kovalevskaya NP, Zheleznaya LA, Matvienko NI.
    Biochemistry (Mosc); 2004 Mar 15; 69(3):299-305. PubMed ID: 15061697
    [Abstract] [Full Text] [Related]

  • 32. M.TaqI facilitates the base flipping via an unusual DNA backbone conformation.
    Wibowo FR, Rauch C, Trieb M, Liedl KR.
    Biopolymers; 2005 Oct 15; 79(3):128-38. PubMed ID: 16047360
    [Abstract] [Full Text] [Related]

  • 33. DNA mismatch-specific base flipping by a bisacridine macrocycle.
    David A, Bleimling N, Beuck C, Lehn JM, Weinhold E, Teulade-Fichou MP.
    Chembiochem; 2003 Dec 05; 4(12):1326-31. PubMed ID: 14661275
    [Abstract] [Full Text] [Related]

  • 34. Substrate binding in vitro and kinetics of RsrI [N6-adenine] DNA methyltransferase.
    Szegedi SS, Reich NO, Gumport RI.
    Nucleic Acids Res; 2000 Oct 15; 28(20):3962-71. PubMed ID: 11024176
    [Abstract] [Full Text] [Related]

  • 35. Investigation of the C-terminal domain of the bacterial DNA-(adenine N6)-methyltransferase CcrM.
    Maier JA, Albu RF, Jurkowski TP, Jeltsch A.
    Biochimie; 2015 Dec 15; 119():60-7. PubMed ID: 26475175
    [Abstract] [Full Text] [Related]

  • 36. DNA binding properties in vivo and target recognition domain sequence alignment analyses of wild-type and mutant RsrI [N6-adenine] DNA methyltransferases.
    Szegedi SS, Gumport RI.
    Nucleic Acids Res; 2000 Oct 15; 28(20):3972-81. PubMed ID: 11024177
    [Abstract] [Full Text] [Related]

  • 37. Binding of EcoP15I DNA methyltransferase to DNA reveals a large structural distortion within the recognition sequence.
    Reddy YV, Rao DN.
    J Mol Biol; 2000 May 12; 298(4):597-610. PubMed ID: 10788323
    [Abstract] [Full Text] [Related]

  • 38. N6-Adenosine DNA Methyltransferase from H. pylori 98-10 Strain in Complex with DNA and AdoMet: Structural Insights from in Silico Studies.
    Singh S, Guruprasad L.
    J Phys Chem B; 2017 Jan 19; 121(2):365-378. PubMed ID: 28054779
    [Abstract] [Full Text] [Related]

  • 39. Substrate promiscuity in DNA methyltransferase M.PvuII. A mechanistic insight.
    Aranda J, Roca M, Tuñón I.
    Org Biomol Chem; 2012 Jul 28; 10(28):5395-400. PubMed ID: 22699309
    [Abstract] [Full Text] [Related]

  • 40. Using the fluorescence decay of 2-aminopurine to investigate conformational change in the recognition sequence of the EcoRV DNA-(adenine-N6)-methyltransferase on enzyme binding.
    Bonnist EY, Liebert K, Dryden DT, Jeltsch A, Jones AC.
    Biophys Chem; 2012 Jan 28; 160(1):28-34. PubMed ID: 21962489
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.