These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
250 related items for PubMed ID: 10336521
1. Betulinic acid-induced apoptosis in glioma cells: A sequential requirement for new protein synthesis, formation of reactive oxygen species, and caspase processing. Wick W, Grimmel C, Wagenknecht B, Dichgans J, Weller M. J Pharmacol Exp Ther; 1999 Jun; 289(3):1306-12. PubMed ID: 10336521 [Abstract] [Full Text] [Related]
2. Betulinic acid triggers CD95 (APO-1/Fas)- and p53-independent apoptosis via activation of caspases in neuroectodermal tumors. Fulda S, Friesen C, Los M, Scaffidi C, Mier W, Benedict M, Nuñez G, Krammer PH, Peter ME, Debatin KM. Cancer Res; 1997 Nov 01; 57(21):4956-64. PubMed ID: 9354463 [Abstract] [Full Text] [Related]
3. Boswellic acids and malignant glioma: induction of apoptosis but no modulation of drug sensitivity. Glaser T, Winter S, Groscurth P, Safayhi H, Sailer ER, Ammon HP, Schabet M, Weller M. Br J Cancer; 1999 May 01; 80(5-6):756-65. PubMed ID: 10360653 [Abstract] [Full Text] [Related]
4. The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. Raisova M, Hossini AM, Eberle J, Riebeling C, Wieder T, Sturm I, Daniel PT, Orfanos CE, Geilen CC. J Invest Dermatol; 2001 Aug 01; 117(2):333-40. PubMed ID: 11511312 [Abstract] [Full Text] [Related]
5. Crm-A, bcl-2 and NDGA inhibit CD95L-induced apoptosis of malignant glioma cells at the level of caspase 8 processing. Wagenknecht B, Schulz JB, Gulbins E, Weller M. Cell Death Differ; 1998 Oct 01; 5(10):894-900. PubMed ID: 10203695 [Abstract] [Full Text] [Related]
6. Proteasome inhibitor-induced apoptosis of glioma cells involves the processing of multiple caspases and cytochrome c release. Wagenknecht B, Hermisson M, Groscurth P, Liston P, Krammer PH, Weller M. J Neurochem; 2000 Dec 01; 75(6):2288-97. PubMed ID: 11080180 [Abstract] [Full Text] [Related]
7. Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells. Fulda S, Susin SA, Kroemer G, Debatin KM. Cancer Res; 1998 Oct 01; 58(19):4453-60. PubMed ID: 9766678 [Abstract] [Full Text] [Related]
8. Sensitization to CD95 ligand-induced apoptosis in human glioma cells by hyperthermia involves enhanced cytochrome c release. Hermisson M, Wagenknecht B, Wolburg H, Glaser T, Dichgans J, Weller M. Oncogene; 2000 May 04; 19(19):2338-45. PubMed ID: 10822385 [Abstract] [Full Text] [Related]
9. Differential activity of bcl-2 and ICE enzyme family protease inhibitors on Fas and puromycin-induced apoptosis of glioma cells. Schlapbach R, Fontana A. Biochim Biophys Acta; 1997 Nov 27; 1359(2):174-80. PubMed ID: 9409814 [Abstract] [Full Text] [Related]
10. Induction of cell cycle arrest and apoptosis by betulinic acid-rich fraction from Dillenia suffruticosa root in MCF-7 cells involved p53/p21 and mitochondrial signalling pathway. Foo JB, Saiful Yazan L, Tor YS, Wibowo A, Ismail N, How CW, Armania N, Loh SP, Ismail IS, Cheah YK, Abdullah R. J Ethnopharmacol; 2015 May 26; 166():270-8. PubMed ID: 25797115 [Abstract] [Full Text] [Related]
11. Topoisomerase-I inhibitors for human malignant glioma: differential modulation of p53, p21, bax and bcl-2 expression and of CD95-mediated apoptosis by camptothecin and beta-lapachone. Weller M, Winter S, Schmidt C, Esser P, Fontana A, Dichgans J, Groscurth P. Int J Cancer; 1997 Nov 27; 73(5):707-14. PubMed ID: 9398050 [Abstract] [Full Text] [Related]
12. Transfection of caspase-3 in the caspase-3-deficient Hodgkin's disease cell line, KMH2, results in enhanced sensitivity to CD95-, TRAIL-, and ARA-C-induced apoptosis. Wrone-Smith T, Izban KF, Ergin M, Cosar EF, Hsi ED, Alkan S. Exp Hematol; 2001 May 27; 29(5):572-81. PubMed ID: 11376869 [Abstract] [Full Text] [Related]
13. Ajoene, an experimental anti-leukemic drug: mechanism of cell death. Dirsch VM, Antlsperger DS, Hentze H, Vollmar AM. Leukemia; 2002 Jan 27; 16(1):74-83. PubMed ID: 11840266 [Abstract] [Full Text] [Related]
14. Betulinic Acid Restricts Human Bladder Cancer Cell Proliferation In Vitro by Inducing Caspase-Dependent Cell Death and Cell Cycle Arrest, and Decreasing Metastatic Potential. Kim SY, Hwangbo H, Kim MY, Ji SY, Kim DH, Lee H, Kim GY, Moon SK, Leem SH, Yun SJ, Kim WJ, Cheong J, Park C, Choi YH. Molecules; 2021 Mar 04; 26(5):. PubMed ID: 33806566 [Abstract] [Full Text] [Related]
15. Potentiation of CD95L-induced apoptosis of human malignant glioma cells by topotecan involves inhibition of RNA synthesis but not changes in CD95 or CD95L protein expression. Winter S, Weller M. J Pharmacol Exp Ther; 1998 Sep 04; 286(3):1374-82. PubMed ID: 9732400 [Abstract] [Full Text] [Related]
16. Betulinic Acid-Mediated Apoptosis in Human Prostate Cancer Cells Involves p53 and Nuclear Factor-Kappa B (NF-κB) Pathways. Shankar E, Zhang A, Franco D, Gupta S. Molecules; 2017 Feb 10; 22(2):. PubMed ID: 28208611 [Abstract] [Full Text] [Related]
17. Mechanisms of apoptosis induced by the synthetic retinoid CD437 in human non-small cell lung carcinoma cells. Sun SY, Yue P, Wu GS, El-Deiry WS, Shroot B, Hong WK, Lotan R. Oncogene; 1999 Apr 08; 18(14):2357-65. PubMed ID: 10327056 [Abstract] [Full Text] [Related]
18. Helenalin triggers a CD95 death receptor-independent apoptosis that is not affected by overexpression of Bcl-x(L) or Bcl-2. Dirsch VM, Stuppner H, Vollmar AM. Cancer Res; 2001 Aug 01; 61(15):5817-23. PubMed ID: 11479221 [Abstract] [Full Text] [Related]
19. Nitric oxide-mediated apoptosis in human breast cancer cells requires changes in mitochondrial functions and is independent of CD95 (APO-1/Fas). Umansky V, Ushmorov A, Ratter F, Chlichlia K, Bucur M, Lichtenauer A, Rocha M. Int J Oncol; 2000 Jan 01; 16(1):109-17. PubMed ID: 10601555 [Abstract] [Full Text] [Related]
20. CD95-mediated apoptosis of human glioma cells: modulation by epidermal growth factor receptor activity. Steinbach JP, Supra P, Huang HJ, Cavenee WK, Weller M. Brain Pathol; 2002 Jan 01; 12(1):12-20. PubMed ID: 11770895 [Abstract] [Full Text] [Related] Page: [Next] [New Search]