These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


559 related items for PubMed ID: 10354442

  • 1. Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin.
    Harroun TA, Heller WT, Weiss TM, Yang L, Huang HW.
    Biophys J; 1999 Jun; 76(6):3176-85. PubMed ID: 10354442
    [Abstract] [Full Text] [Related]

  • 2. Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin.
    Harroun TA, Heller WT, Weiss TM, Yang L, Huang HW.
    Biophys J; 1999 Feb; 76(2):937-45. PubMed ID: 9929495
    [Abstract] [Full Text] [Related]

  • 3. Peptide-lipid interactions and mechanisms of antimicrobial peptides.
    Huang HW.
    Novartis Found Symp; 1999 Feb; 225():188-200; discussion 200-6. PubMed ID: 10472056
    [Abstract] [Full Text] [Related]

  • 4. Quantitative Characterization of Protein-Lipid Interactions by Free Energy Simulation between Binary Bilayers.
    Park S, Yeom MS, Andersen OS, Pastor RW, Im W.
    J Chem Theory Comput; 2019 Nov 12; 15(11):6491-6503. PubMed ID: 31560853
    [Abstract] [Full Text] [Related]

  • 5. Influence of hydrophobic mismatch on structures and dynamics of gramicidin a and lipid bilayers.
    Kim T, Lee KI, Morris P, Pastor RW, Andersen OS, Im W.
    Biophys J; 2012 Apr 04; 102(7):1551-60. PubMed ID: 22500755
    [Abstract] [Full Text] [Related]

  • 6. Ion channel stability of Gramicidin A in lipid bilayers: effect of hydrophobic mismatch.
    Basu I, Chattopadhyay A, Mukhopadhyay C.
    Biochim Biophys Acta; 2014 Jan 04; 1838(1 Pt B):328-38. PubMed ID: 24125683
    [Abstract] [Full Text] [Related]

  • 7. X-ray scattering with momentum transfer in the plane of membrane. Application to gramicidin organization.
    He K, Ludtke SJ, Wu Y, Huang HW.
    Biophys J; 1993 Jan 04; 64(1):157-62. PubMed ID: 7679294
    [Abstract] [Full Text] [Related]

  • 8. Gramicidin channel-induced lipid membrane deformation energy: influence of chain length and boundary conditions.
    Ring A.
    Biochim Biophys Acta; 1996 Jan 31; 1278(2):147-59. PubMed ID: 8593271
    [Abstract] [Full Text] [Related]

  • 9. Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime.
    Huang HW.
    Biophys J; 1986 Dec 31; 50(6):1061-70. PubMed ID: 2432948
    [Abstract] [Full Text] [Related]

  • 10. Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. I. Structure of the molecular complex.
    Chiu SW, Subramaniam S, Jakobsson E.
    Biophys J; 1999 Apr 31; 76(4):1929-38. PubMed ID: 10096891
    [Abstract] [Full Text] [Related]

  • 11. Energetics of inclusion-induced bilayer deformations.
    Nielsen C, Goulian M, Andersen OS.
    Biophys J; 1998 Apr 31; 74(4):1966-83. PubMed ID: 9545056
    [Abstract] [Full Text] [Related]

  • 12. Atomistic simulation of hydrophobic matching effects on lipid composition near a helical peptide embedded in mixed-lipid bilayers.
    Yin F, Kindt JT.
    J Phys Chem B; 2010 Jun 24; 114(24):8076-80. PubMed ID: 20509701
    [Abstract] [Full Text] [Related]

  • 13. Structure, energetics, and dynamics of lipid-protein interactions: A molecular dynamics study of the gramicidin A channel in a DMPC bilayer.
    Woolf TB, Roux B.
    Proteins; 1996 Jan 24; 24(1):92-114. PubMed ID: 8628736
    [Abstract] [Full Text] [Related]

  • 14. Influence of ion occupancy and membrane deformation on gramicidin A channel stability in lipid membranes.
    Ring A.
    Biophys J; 1992 May 24; 61(5):1306-15. PubMed ID: 1376157
    [Abstract] [Full Text] [Related]

  • 15. Regulation of sodium channel function by bilayer elasticity: the importance of hydrophobic coupling. Effects of Micelle-forming amphiphiles and cholesterol.
    Lundbaek JA, Birn P, Hansen AJ, Søgaard R, Nielsen C, Girshman J, Bruno MJ, Tape SE, Egebjerg J, Greathouse DV, Mattice GL, Koeppe RE, Andersen OS.
    J Gen Physiol; 2004 May 24; 123(5):599-621. PubMed ID: 15111647
    [Abstract] [Full Text] [Related]

  • 16. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A.
    de Planque MR, Greathouse DV, Koeppe RE, Schäfer H, Marsh D, Killian JA.
    Biochemistry; 1998 Jun 30; 37(26):9333-45. PubMed ID: 9649314
    [Abstract] [Full Text] [Related]

  • 17. Spring constants for channel-induced lipid bilayer deformations. Estimates using gramicidin channels.
    Lundbaek JA, Andersen OS.
    Biophys J; 1999 Feb 30; 76(2):889-95. PubMed ID: 9929490
    [Abstract] [Full Text] [Related]

  • 18. Single-molecule methods for monitoring changes in bilayer elastic properties.
    Andersen OS, Bruno MJ, Sun H, Koeppe RE.
    Methods Mol Biol; 2007 Feb 30; 400():543-70. PubMed ID: 17951759
    [Abstract] [Full Text] [Related]

  • 19. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins.
    Venturoli M, Smit B, Sperotto MM.
    Biophys J; 2005 Mar 30; 88(3):1778-98. PubMed ID: 15738466
    [Abstract] [Full Text] [Related]

  • 20. Gramicidin A Channel Formation Induces Local Lipid Redistribution I: Experiment and Simulation.
    Beaven AH, Maer AM, Sodt AJ, Rui H, Pastor RW, Andersen OS, Im W.
    Biophys J; 2017 Mar 28; 112(6):1185-1197. PubMed ID: 28355546
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.