These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. In vivo performance of a muscle-powered drive system for implantable blood pumps. Trumble DR, Melvin DB, Dean DA, Magovern JA. ASAIO J; 2008; 54(3):227-32. PubMed ID: 18496270 [Abstract] [Full Text] [Related]
3. A new skeletal muscle linear-pull energy convertor as a power source for prosthetic circulatory support devices [corrected]. Farrar DJ, Hill JD. J Heart Lung Transplant; 1992; 11(5):S341-50. PubMed ID: 1420227 [Abstract] [Full Text] [Related]
4. The effect of left ventricular function and drive pressures on the filling and ejection of a pulsatile pediatric ventricular assist device in an acute animal model. Lukic B, Zapanta CM, Khalapyan T, Connell J, Pae WE, Myers JL, Wilson RP, Undar A, Rosenberg G, Weiss WJ. ASAIO J; 2007; 53(3):379-84. PubMed ID: 17515733 [Abstract] [Full Text] [Related]
5. Skeletal muscle-powered ventricle. Effects of size and configuration on ventricular function. Oda T, Miyamoto AT, Okamoto Y, Ban T. J Thorac Cardiovasc Surg; 1993 Jan; 105(1):68-77. PubMed ID: 8419711 [Abstract] [Full Text] [Related]
8. Optimal pressure regulation of the pneumatic ventricular assist device with bellows-type driver. Lee JJ, Kim BS, Choi J, Choi H, Ahn CB, Nam KW, Jeong GS, Lim CH, Son HS, Sun K. Artif Organs; 2009 Aug; 33(8):627-33. PubMed ID: 19624587 [Abstract] [Full Text] [Related]
9. Output power and metabolic input power of skeletal muscle contracting linearly to compress a pouch in a mock circulatory system. Geddes LA, Badylak SF, Tacker WA, Janas W. J Thorac Cardiovasc Surg; 1992 Nov; 104(5):1435-42. PubMed ID: 1434727 [Abstract] [Full Text] [Related]
10. Evaluation of left ventricular assist device performance and hydraulic force in a complete mock circulation loop. Timms D, Hayne M, Tan A, Pearcy M. Artif Organs; 2005 Jul; 29(7):573-80. PubMed ID: 15982286 [Abstract] [Full Text] [Related]
13. Development of an algorithm to regulate pump output for a closed air-loop type pneumatic biventricular assist device. Nam KW, Lee JJ, Hwang CM, Choi J, Choi H, Choi SW, Sun K. Artif Organs; 2009 Dec; 33(12):1063-8. PubMed ID: 19604228 [Abstract] [Full Text] [Related]
15. Development of a closed air loop electropneumatic actuator for driving a pneumatic blood pump. Jeong GS, Hwang CM, Nam KW, Ahn CB, Kim HC, Lee JJ, Choi J, Son HS, Fang YH, Son KH, Lim CH, Sun K. Artif Organs; 2009 Aug; 33(8):657-62. PubMed ID: 19624584 [Abstract] [Full Text] [Related]
16. Hemodynamics of a pulsatile left ventricular assist device driven by a counterpulsation pump in a mock circulation. Khir AW, Swalen MJ, Segers P, Verdonck P, Pepper JR. Artif Organs; 2006 Apr; 30(4):308-12. PubMed ID: 16643389 [Abstract] [Full Text] [Related]
18. Numerical design and experimental hydraulic testing of an axial flow ventricular assist device for infants and children. Throckmorton AL, Untaroiu A, Allaire PE, Wood HG, Lim DS, McCulloch MA, Olsen DB. ASAIO J; 2007 Apr; 53(6):754-61. PubMed ID: 18043161 [Abstract] [Full Text] [Related]
19. A new pulsatile volumetric device with biomorphic valves for the in vitro study of the cardiovascular system. Lanzarone E, Vismara R, Fiore GB. Artif Organs; 2009 Dec; 33(12):1048-62. PubMed ID: 19604227 [Abstract] [Full Text] [Related]
20. Development of a non-pulsatile permanent rotary blood pump. Nose Y, Kawahito K. Eur J Cardiothorac Surg; 1997 Apr; 11 Suppl():S32-8. PubMed ID: 9271179 [Abstract] [Full Text] [Related] Page: [Next] [New Search]