These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
470 related items for PubMed ID: 10360948
1. Orientation of LamB signal peptides in bilayers: influence of lipid probes on peptide binding and interpretation of fluorescence quenching data. Voglino L, Simon SA, McIntosh TJ. Biochemistry; 1999 Jun 08; 38(23):7509-16. PubMed ID: 10360948 [Abstract] [Full Text] [Related]
2. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface. Voglino L, McIntosh TJ, Simon SA. Biochemistry; 1998 Sep 01; 37(35):12241-52. PubMed ID: 9724538 [Abstract] [Full Text] [Related]
3. Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL. Powl AM, East JM, Lee AG. Biochemistry; 2003 Dec 09; 42(48):14306-17. PubMed ID: 14640699 [Abstract] [Full Text] [Related]
4. Anionic phospholipids modulate peptide insertion into membranes. Liu LP, Deber CM. Biochemistry; 1997 May 06; 36(18):5476-82. PubMed ID: 9154930 [Abstract] [Full Text] [Related]
5. Modulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function. Ghosh AK, Rukmini R, Chattopadhyay A. Biochemistry; 1997 Nov 25; 36(47):14291-305. PubMed ID: 9398147 [Abstract] [Full Text] [Related]
6. Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth. Kaiser RD, London E. Biochemistry; 1998 Jun 02; 37(22):8180-90. PubMed ID: 9609714 [Abstract] [Full Text] [Related]
7. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Dathe M, Schümann M, Wieprecht T, Winkler A, Beyermann M, Krause E, Matsuzaki K, Murase O, Bienert M. Biochemistry; 1996 Sep 24; 35(38):12612-22. PubMed ID: 8823199 [Abstract] [Full Text] [Related]
8. Interaction of C-terminal loop 13 of sodium-glucose cotransporter SGLT1 with lipid bilayers. Raja MM, Kinne RK. Biochemistry; 2005 Jun 28; 44(25):9123-9. PubMed ID: 15966736 [Abstract] [Full Text] [Related]
9. Thermodynamics of the membrane insertion process of the M13 procoat protein, a lipid bilayer traversing protein containing a leader sequence. Soekarjo M, Eisenhawer M, Kuhn A, Vogel H. Biochemistry; 1996 Jan 30; 35(4):1232-41. PubMed ID: 8573578 [Abstract] [Full Text] [Related]
15. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length. Ren J, Lew S, Wang J, London E. Biochemistry; 1999 May 04; 38(18):5905-12. PubMed ID: 10231543 [Abstract] [Full Text] [Related]
16. The orientation of nisin in membranes. Breukink E, van Kraaij C, van Dalen A, Demel RA, Siezen RJ, de Kruijff B, Kuipers OP. Biochemistry; 1998 Jun 02; 37(22):8153-62. PubMed ID: 9609711 [Abstract] [Full Text] [Related]
18. Insight into the environment of tryptophan in a hydrophobic model peptide upon aggregation and interaction with lipid vesicles: a steady state and time resolved fluorescence study. Joseph M, Nagaraj R. Indian J Biochem Biophys; 1998 Apr 02; 35(2):67-75. PubMed ID: 9753864 [Abstract] [Full Text] [Related]
19. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase. Johnson JE, Rao NM, Hui SW, Cornell RB. Biochemistry; 1998 Jun 30; 37(26):9509-19. PubMed ID: 9649334 [Abstract] [Full Text] [Related]