These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


751 related items for PubMed ID: 10363212

  • 1. Correlation between surface and air counts of particles carrying aerobic bacteria in operating rooms with turbulent ventilation: an experimental study.
    Friberg B, Friberg S, Burman LG.
    J Hosp Infect; 1999 May; 42(1):61-8. PubMed ID: 10363212
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Surgical area contamination--comparable bacterial counts using disposable head and mask and helmet aspirator system, but dramatic increase upon omission of head-gear: an experimental study in horizontal laminar air-flow.
    Friberg B, Friberg S, Ostensson R, Burman LG.
    J Hosp Infect; 2001 Feb; 47(2):110-5. PubMed ID: 11170774
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Aerobiology in the operating room and its implications for working standards.
    Friberg B, Friberg S.
    Proc Inst Mech Eng H; 2005 Feb; 219(2):153-60. PubMed ID: 15819486
    [Abstract] [Full Text] [Related]

  • 8. The addition of a mobile ultra-clean exponential laminar airflow screen to conventional operating room ventilation reduces bacterial contamination to operating box levels.
    Friberg S, Ardnor B, Lundholm R, Friberg B.
    J Hosp Infect; 2003 Oct; 55(2):92-7. PubMed ID: 14529632
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Single-use surgical clothing system for reduction of airborne bacteria in the operating room.
    Tammelin A, Ljungqvist B, Reinmüller B.
    J Hosp Infect; 2013 Jul; 84(3):245-7. PubMed ID: 23694760
    [Abstract] [Full Text] [Related]

  • 16. Predicting bacterial populations based on airborne particulates: a study performed in nonlaminar flow operating rooms during joint arthroplasty surgery.
    Stocks GW, Self SD, Thompson B, Adame XA, O'Connor DP.
    Am J Infect Control; 2010 Apr; 38(3):199-204. PubMed ID: 19913327
    [Abstract] [Full Text] [Related]

  • 17. [Bacterial contamination of the air in different operating rooms].
    Audurier A, Fenneteau A, Rivière R, Raoult A.
    Rev Epidemiol Sante Publique; 1985 Apr; 33(2):134-41. PubMed ID: 4035044
    [Abstract] [Full Text] [Related]

  • 18. Monitoring air sampling in operating theatres: can particle counting replace microbiological sampling?
    Landrin A, Bissery A, Kac G.
    J Hosp Infect; 2005 Sep; 61(1):27-9. PubMed ID: 16009457
    [Abstract] [Full Text] [Related]

  • 19. [The effect of the ventilation rate on air particle and air microbe concentration in operating rooms with conventional ventilation. 1. Measurement without surgical activity].
    Kruppa B, Rüden H.
    Zentralbl Hyg Umweltmed; 1993 May; 194(3):236-46. PubMed ID: 8338613
    [Abstract] [Full Text] [Related]

  • 20. [Optimum utilization of the ventilation system to reduce airborne bacteria in operating rooms].
    Wanner HU, Huber G, Meierhans R, Weber BG.
    Helv Chir Acta; 1980 Sep; 47(3-4):493-504. PubMed ID: 7204069
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 38.