These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
192 related items for PubMed ID: 10370201
21. To determine the end point of wet granulation by measuring powder energies and thermal properties. Dave RH, Wu SH, Contractor LD. Drug Dev Ind Pharm; 2012 Apr; 38(4):439-46. PubMed ID: 22188039 [Abstract] [Full Text] [Related]
22. True density of microcrystalline cellulose. Sun CC. J Pharm Sci; 2005 Oct; 94(10):2132-4. PubMed ID: 16136576 [Abstract] [Full Text] [Related]
26. Microcrystalline cellulose and its microstructure in pharmaceutical processing. Westermarck S, Juppo AM, Kervinen L, Yliruusi J. Eur J Pharm Biopharm; 1999 Nov; 48(3):199-206. PubMed ID: 10612030 [Abstract] [Full Text] [Related]
27. EFFECT OF SIMULTANEOUSLY SILICIFIED MICROCRYSTALLINE CELLULOSE AND PREGELATINIZED STARCH ON THE THEOPHYLLINE TABLETS STABILITY. Mazurek-Wadołkowska E, Winnicka K, Czyzewska U, Miltyk W. Acta Pol Pharm; 2016 Jul; 73(4):1029-1036. PubMed ID: 29648729 [Abstract] [Full Text] [Related]
29. Application of silicified microcrystalline cellulose (Prosolv) as a polymer carrier of Epilobium parviflorum Schreb. extract in oral solid drug form. Marczyński Z, Zgoda MM, Jambor J. Polim Med; 2007 Jul; 37(2):21-32. PubMed ID: 17957946 [Abstract] [Full Text] [Related]
31. Evolution of structure and properties of granules containing microcrystalline cellulose and polyvinylpyrrolidone during high-shear wet granulation. Osei-Yeboah F, Feng Y, Sun CC. J Pharm Sci; 2014 Jan; 103(1):207-15. PubMed ID: 24218097 [Abstract] [Full Text] [Related]
32. Characterization of wet massing behavior of silicified microcrystalline cellulose and alpha-lactose monohydrate using near-infrared spectroscopy. Luukkonen P, Rantanen J, Mäkelä K, Räsänen E, Tenhunen J, Yliruusi J. Pharm Dev Technol; 2001 Jan; 6(1):1-9. PubMed ID: 11247268 [Abstract] [Full Text] [Related]
33. Thermogravimetric analysis for the determination of water release rate from microcrystalline cellulose dry powder and wet bead systems. Mayville FC, Wigent RJ, Schwartz JB. Pharm Dev Technol; 2006 Jan; 11(3):359-70. PubMed ID: 16895846 [Abstract] [Full Text] [Related]
35. Effects of excipients on hydrate formation in wet masses containing theophylline. Airaksinen S, Luukkonen P, Jørgensen A, Karjalainen M, Rantanen J, Yliruusi J. J Pharm Sci; 2003 Mar; 92(3):516-28. PubMed ID: 12587113 [Abstract] [Full Text] [Related]
36. Effect of silicification on the tableting performance of cellulose ii: a novel multifunctional excipient. Rojas J, Kumar V. Chem Pharm Bull (Tokyo); 2012 Mar; 60(5):603-11. PubMed ID: 22689398 [Abstract] [Full Text] [Related]
37. Evaluation and comparison of a moist granulation technique to conventional methods. Railkar AM, Schwartz JB. Drug Dev Ind Pharm; 2000 Aug; 26(8):885-9. PubMed ID: 10900546 [Abstract] [Full Text] [Related]
38. Role of excipients in hydrate formation kinetics of theophylline in wet masses studied by near-infrared spectroscopy. Jørgensen AC, Airaksinen S, Karjalainen M, Luukkonen P, Rantanen J, Yliruusi J. Eur J Pharm Sci; 2004 Sep; 23(1):99-104. PubMed ID: 15324927 [Abstract] [Full Text] [Related]
39. Roles of granule size in over-granulation during high shear wet granulation. Shi L, Feng Y, Sun CC. J Pharm Sci; 2010 Aug; 99(8):3322-5. PubMed ID: 20232456 [Abstract] [Full Text] [Related]
40. Latent structure analysis in the pharmaceutical process of tablets prepared by wet granulation. Uehara N, Hayashi Y, Mochida H, Otoguro S, Onuki Y, Obata Y, Takayama K. Drug Dev Ind Pharm; 2016 Jan; 42(1):116-122. PubMed ID: 25997364 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]