These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


232 related items for PubMed ID: 10371157

  • 1. -->H+/2e- stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles.
    Galkin AS, Grivennikova VG, Vinogradov AD.
    FEBS Lett; 1999 May 21; 451(2):157-61. PubMed ID: 10371157
    [Abstract] [Full Text] [Related]

  • 2. H+/2e- stoichiometry of the nadh:ubiquinone reductase reaction catalyzed by submitochondrial particles.
    Galkin AS, Grivennikova VG, Vinogradov AD.
    Biochemistry (Mosc); 2001 Apr 21; 66(4):435-43. PubMed ID: 11403652
    [Abstract] [Full Text] [Related]

  • 3. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation.
    Takeshige K, Minakami S.
    Biochem J; 1979 Apr 15; 180(1):129-35. PubMed ID: 39543
    [Abstract] [Full Text] [Related]

  • 4. Redox-dependent change of nucleotide affinity to the active site of the mammalian complex I.
    Grivennikova VG, Kotlyar AB, Karliner JS, Cecchini G, Vinogradov AD.
    Biochemistry; 2007 Sep 25; 46(38):10971-8. PubMed ID: 17760425
    [Abstract] [Full Text] [Related]

  • 5. Comparison of the inhibitory action of natural rotenone and its stereoisomers with various NADH-ubiquinone reductases.
    Ueno H, Miyoshi H, Ebisui K, Iwamura H.
    Eur J Biochem; 1994 Oct 01; 225(1):411-7. PubMed ID: 7925463
    [Abstract] [Full Text] [Related]

  • 6. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB, Vinogradov AD.
    Biochim Biophys Acta; 1990 Aug 30; 1019(2):151-8. PubMed ID: 2119805
    [Abstract] [Full Text] [Related]

  • 7. Pro- and anti-oxidant activities of the mitochondrial respiratory chain: factors influencing NAD(P)H-induced lipid peroxidation.
    Glinn MA, Lee CP, Ernster L.
    Biochim Biophys Acta; 1997 Jan 16; 1318(1-2):246-54. PubMed ID: 9030267
    [Abstract] [Full Text] [Related]

  • 8. Ion transport and respiratory control in vesicles formed from reduced nicotinamide adenine dinucleotide coenzyme Q reductase and phospholipids.
    Ragan CI, Hinkle PC.
    J Biol Chem; 1975 Nov 10; 250(21):8472-6. PubMed ID: 386
    [Abstract] [Full Text] [Related]

  • 9. A competitive inhibition of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) by ADP-ribose.
    Zharova TV, Vinogradov AD.
    Biochim Biophys Acta; 1997 Jul 04; 1320(3):256-64. PubMed ID: 9230920
    [Abstract] [Full Text] [Related]

  • 10. Ubisemiquinones as obligatory intermediates in the electron transfer from NADH to ubiquinone.
    De Jong AM, Albracht SP.
    Eur J Biochem; 1994 Jun 15; 222(3):975-82. PubMed ID: 8026508
    [Abstract] [Full Text] [Related]

  • 11. Triton X-100 as a specific inhibitor of the mammalian NADH-ubiquinone oxidoreductase (Complex I).
    Ushakova AV, Grivennikova VG, Ohnishi T, Vinogradov AD.
    Biochim Biophys Acta; 1999 Jan 05; 1409(3):143-53. PubMed ID: 9878712
    [Abstract] [Full Text] [Related]

  • 12. Mechanism of respiration-driven proton translocation in the inner mitochondrial membrane. Analysis of proton translocation associated with oxidation of endogenous ubiquinol.
    Papa S, Lorusso M, Guerrieri F.
    Biochim Biophys Acta; 1975 Jun 17; 387(3):425-40. PubMed ID: 237540
    [Abstract] [Full Text] [Related]

  • 13. Relation of superoxide generation and lipid peroxidation to the inhibition of NADH-Q oxidoreductase by rotenone, piericidin A, and MPP+.
    Ramsay RR, Singer TP.
    Biochem Biophys Res Commun; 1992 Nov 30; 189(1):47-52. PubMed ID: 1333196
    [Abstract] [Full Text] [Related]

  • 14. Lipid peroxidation and the reduction of ADP-Fe3+ chelate by NADH-ubiquinone reductase preparation from bovine heart mitochondria.
    Takeshige K, Takayanagi R, Minakami S.
    Biochem J; 1980 Dec 15; 192(3):861-6. PubMed ID: 6786284
    [Abstract] [Full Text] [Related]

  • 15. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG, Vinogradov AD.
    Biochim Biophys Acta; 2006 Dec 15; 1757(5-6):553-61. PubMed ID: 16678117
    [Abstract] [Full Text] [Related]

  • 16. Selective inhibition of mitochondrial NADH-ubiquinone reductase (Complex I) by an alkyl polyoxyethylene ether.
    Suzuki H, Wakai M, Ozawa T.
    Biochem Int; 1986 Aug 15; 13(2):351-7. PubMed ID: 3094534
    [Abstract] [Full Text] [Related]

  • 17. Uncoupler-inhibitor titrations of ATP-driven reverse electron transfer in bovine submitochondrial particles provide evidence for direct interaction between ATPase and NADH:Q oxidoreductase.
    Herweijer MA, Berden JA, Slater EC.
    Biochim Biophys Acta; 1986 Apr 24; 849(2):276-87. PubMed ID: 2421768
    [Abstract] [Full Text] [Related]

  • 18. Measurement of the membrane potential generated by complex I in submitochondrial particles.
    Ghelli A, Benelli B, Esposti MD.
    J Biochem; 1997 Apr 24; 121(4):746-55. PubMed ID: 9163527
    [Abstract] [Full Text] [Related]

  • 19. EPR characterization of ubisemiquinones and iron-sulfur cluster N2, central components of the energy coupling in the NADH-ubiquinone oxidoreductase (complex I) in situ.
    Magnitsky S, Toulokhonova L, Yano T, Sled VD, Hägerhäll C, Grivennikova VG, Burbaev DS, Vinogradov AD, Ohnishi T.
    J Bioenerg Biomembr; 2002 Jun 24; 34(3):193-208. PubMed ID: 12171069
    [Abstract] [Full Text] [Related]

  • 20. The locus of inhibition of NADH oxidation by benzothiadiazoles in beef heart submitochondrial particles.
    Ferreira J, Wilkinson C, Gil L.
    Biochem Int; 1986 Mar 24; 12(3):447-59. PubMed ID: 3707593
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.