These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


141 related items for PubMed ID: 10378469

  • 1. Pyridine nucleotide flux and glutathione oxidation in the cultured rat conceptus.
    Akella SS, Harris C.
    Reprod Toxicol; 1999; 13(3):203-13. PubMed ID: 10378469
    [Abstract] [Full Text] [Related]

  • 2. Real time microfiberoptic redox fluorometry: modulation of the pyridine nucleotide status of the organogenesis-stage rat visceral yolk sac with cyanide and alloxan.
    Thorsrud BA, Harris C.
    Toxicol Appl Pharmacol; 1995 Dec; 135(2):237-45. PubMed ID: 8545833
    [Abstract] [Full Text] [Related]

  • 3. Glutathione oxidation and embryotoxicity elicited by diamide in the developing rat conceptus in vitro.
    Hiranruengchok R, Harris C.
    Toxicol Appl Pharmacol; 1993 May; 120(1):62-71. PubMed ID: 8511783
    [Abstract] [Full Text] [Related]

  • 4. Diamide-induced alterations of intracellular thiol status and the regulation of glucose metabolism in the developing rat conceptus in vitro.
    Hiranruengchok R, Harris C.
    Teratology; 1995 Oct; 52(4):205-14. PubMed ID: 8838290
    [Abstract] [Full Text] [Related]

  • 5. Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses.
    Harris C, Shuster DZ, Roman Gomez R, Sant KE, Reed MS, Pohl J, Hansen JM.
    Free Radic Biol Med; 2013 Oct; 63():325-37. PubMed ID: 23736079
    [Abstract] [Full Text] [Related]

  • 6. Formation of protein-glutathione mixed disulfides in the developing rat conceptus following diamide treatment in vitro.
    Hiranruengchok R, Harris C.
    Teratology; 1995 Oct; 52(4):196-204. PubMed ID: 8838289
    [Abstract] [Full Text] [Related]

  • 7. Formation of glutathione adducts and 2-aminofluorene from 2-nitrosofluorene in postimplantation rat conceptuses in vitro.
    Berberian RM, Eurich GE, Rios GA, Harris C.
    Reprod Toxicol; 1996 Oct; 10(4):273-84. PubMed ID: 8829250
    [Abstract] [Full Text] [Related]

  • 8. Lindane embryotoxicity and differential alteration of cysteine and glutathione levels in rat embryos and visceral yolk sacs.
    McNutt TL, Harris C.
    Reprod Toxicol; 1994 Oct; 8(4):351-62. PubMed ID: 7524828
    [Abstract] [Full Text] [Related]

  • 9. Amino acid starvation induced by protease inhibition produces differential alterations in redox status and the thiol proteome in organogenesis-stage rat embryos and visceral yolk sacs.
    Harris C, Jilek JL, Sant KE, Pohl J, Reed M, Hansen JM.
    J Nutr Biochem; 2015 Dec; 26(12):1589-98. PubMed ID: 26365578
    [Abstract] [Full Text] [Related]

  • 10. Mechanism for the changes in levels of glutathione upon exposure of cultured mammalian cells to tertiary-butylhydroperoxide and diamide.
    Ochi T.
    Arch Toxicol; 1993 Dec; 67(6):401-10. PubMed ID: 8215909
    [Abstract] [Full Text] [Related]

  • 11. Spatial activities and induction of glutamate-cysteine ligase (GCL) in the postimplantation rat embryo and visceral yolk sac.
    Hansen JM, Lee E, Harris C.
    Toxicol Sci; 2004 Oct; 81(2):371-8. PubMed ID: 15115889
    [Abstract] [Full Text] [Related]

  • 12. Reduction of glutathione disulfide and the maintenance of reducing equivalents in hypoxic hearts after the infusion of diamide.
    Lund LG, Paraidathathu T, Kehrer JP.
    Toxicology; 1994 Nov 11; 93(2-3):249-62. PubMed ID: 7974518
    [Abstract] [Full Text] [Related]

  • 13. Characterizing thiol redox dynamics in the organogenesis stage rat embryo.
    Veltman K, Ahmad Y, Harris C, Jolliet O.
    Free Radic Biol Med; 2017 Dec 11; 113():97-108. PubMed ID: 28916472
    [Abstract] [Full Text] [Related]

  • 14. Oxygen dependence of oxidative stress. Rate of NADPH supply for maintaining the GSH pool during hypoxia.
    Tribble DL, Jones DP.
    Biochem Pharmacol; 1990 Feb 15; 39(4):729-36. PubMed ID: 2306281
    [Abstract] [Full Text] [Related]

  • 15. Differential alteration by thalidomide of the glutathione content of rat vs. rabbit conceptuses in vitro.
    Hansen JM, Carney EW, Harris C.
    Reprod Toxicol; 1999 Feb 15; 13(6):547-54. PubMed ID: 10613403
    [Abstract] [Full Text] [Related]

  • 16. Multiple NADPH-producing pathways control glutathione (GSH) content in retina.
    Winkler BS, DeSantis N, Solomon F.
    Exp Eye Res; 1986 Nov 15; 43(5):829-47. PubMed ID: 3803464
    [Abstract] [Full Text] [Related]

  • 17. Sublethal oxidant stress induces a reversible increase in intracellular calcium dependent on NAD(P)H oxidation in rat alveolar macrophages.
    Livingston FR, Lui EM, Loeb GA, Forman HJ.
    Arch Biochem Biophys; 1992 Nov 15; 299(1):83-91. PubMed ID: 1444455
    [Abstract] [Full Text] [Related]

  • 18. Glutathione biosynthesis in the postimplantation rat conceptus in vitro.
    Harris C.
    Toxicol Appl Pharmacol; 1993 Jun 15; 120(2):247-56. PubMed ID: 8511794
    [Abstract] [Full Text] [Related]

  • 19. The reduction of glutathione disulfide produced by t-butyl hydroperoxide in respiring mitochondria.
    Liu H, Kehrer JP.
    Free Radic Biol Med; 1996 Jun 15; 20(3):433-42. PubMed ID: 8720915
    [Abstract] [Full Text] [Related]

  • 20. Metabolism of pyridine nucleotides in cultured rat hepatocytes intoxicated with tert-butyl hydroperoxide.
    Yamamoto K, Farber JL.
    Biochem Pharmacol; 1992 Mar 03; 43(5):1119-26. PubMed ID: 1554384
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.