These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


190 related items for PubMed ID: 10381203

  • 21. Detection by ESR of DMPO hydroxyl adduct formation from islets of Langerhans.
    Pieper GM, Felix CC, Kalyanaraman B, Turk M, Roza AM.
    Free Radic Biol Med; 1995 Aug; 19(2):219-25. PubMed ID: 7649493
    [Abstract] [Full Text] [Related]

  • 22. Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species.
    Tiedge M, Lortz S, Munday R, Lenzen S.
    Diabetes; 1998 Oct; 47(10):1578-85. PubMed ID: 9753295
    [Abstract] [Full Text] [Related]

  • 23. The protective role of copper-zinc superoxide dismutase against alloxan-induced diabetes: morphological aspects.
    Thaete LG, Crouch RK, Buse MG, Spicer SS.
    Diabetologia; 1985 Sep; 28(9):677-82. PubMed ID: 3905479
    [Abstract] [Full Text] [Related]

  • 24. Mechanism of DNA damage by cadmium and interplay of antioxidant enzymes and agents.
    Badisa VL, Latinwo LM, Odewumi CO, Ikediobi CO, Badisa RB, Ayuk-Takem LT, Nwoga J, West J.
    Environ Toxicol; 2007 Apr; 22(2):144-51. PubMed ID: 17366568
    [Abstract] [Full Text] [Related]

  • 25. Protective role of superoxide dismutase against diabetogenic drugs.
    Gandy SE, Buse MG, Crouch RK.
    J Clin Invest; 1982 Sep; 70(3):650-8. PubMed ID: 6213639
    [Abstract] [Full Text] [Related]

  • 26. Effect of extracellularly generated free radicals on the plasma membrane permeability of isolated pancreatic B-cells.
    Grankvist K, Marklund SL.
    Int J Biochem; 1986 Sep; 18(2):109-13. PubMed ID: 3512330
    [Abstract] [Full Text] [Related]

  • 27. Ferritin stimulation of hydroxyl radical production by rat liver nuclei.
    Kukiełka E, Cederbaum AI.
    Arch Biochem Biophys; 1994 Jan; 308(1):70-7. PubMed ID: 8311476
    [Abstract] [Full Text] [Related]

  • 28. Protection of B cells against the effect of alloxan.
    Abdel-Rahman MS, Elrakhawy FI, Iskander FA.
    Toxicol Lett; 1992 Nov; 63(2):155-64. PubMed ID: 1455447
    [Abstract] [Full Text] [Related]

  • 29. Induction of DNA strand breakage and base oxidation by nitroxyl anion through hydroxyl radical production.
    Ohshima H, Gilibert I, Bianchini F.
    Free Radic Biol Med; 1999 May; 26(9-10):1305-13. PubMed ID: 10381204
    [Abstract] [Full Text] [Related]

  • 30. Intermediates in the aerobic autoxidation of 6-hydroxydopamine: relative importance under different reaction conditions.
    Gee P, Davison AJ.
    Free Radic Biol Med; 1989 May; 6(3):271-84. PubMed ID: 2545550
    [Abstract] [Full Text] [Related]

  • 31. Relative importance of cellular uptake and reactive oxygen species for the toxicity of alloxan and dialuric acid to insulin-producing cells.
    Elsner M, Gurgul-Convey E, Lenzen S.
    Free Radic Biol Med; 2006 Sep 01; 41(5):825-34. PubMed ID: 16895803
    [Abstract] [Full Text] [Related]

  • 32. Effects of alloxan and reducing agents on macrophages in culture.
    Zhang H, Zdolsek JM, Brunk UT.
    APMIS; 1991 Nov 01; 99(11):1038-48. PubMed ID: 1958348
    [Abstract] [Full Text] [Related]

  • 33. DNA breakage induced by 1,2,4-benzenetriol: relative contributions of oxygen-derived active species and transition metal ions.
    Li AS, Bandy B, Tsang S, Davison AJ.
    Free Radic Biol Med; 2001 May 01; 30(9):943-56. PubMed ID: 11316574
    [Abstract] [Full Text] [Related]

  • 34. Differential roles of hydrogen peroxide and hydroxyl radical in cisplatin-induced cell death in renal proximal tubular epithelial cells.
    Baek SM, Kwon CH, Kim JH, Woo JS, Jung JS, Kim YK.
    J Lab Clin Med; 2003 Sep 01; 142(3):178-86. PubMed ID: 14532906
    [Abstract] [Full Text] [Related]

  • 35. Alloxan acts as a prooxidant only under reducing conditions: influence of melatonin.
    Brömme HJ, Ebelt H, Peschke D, Peschke E.
    Cell Mol Life Sci; 1999 Mar 01; 55(3):487-93. PubMed ID: 10228562
    [Abstract] [Full Text] [Related]

  • 36. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. II. Biological effects resulting from the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.
    Li Y, Kuppusamy P, Zweir JL, Trush MA.
    Mol Pharmacol; 1996 Mar 01; 49(3):412-21. PubMed ID: 8643080
    [Abstract] [Full Text] [Related]

  • 37. 1,10 phenanthroline, a metal chelator, protects against alloxan- but not streptozotocin-induced diabetes.
    Eizirik DL, de Lúcio MA, Boschero AC, Hoffmann ME.
    J Free Radic Biol Med; 1986 Mar 01; 2(3):189-92. PubMed ID: 3033047
    [Abstract] [Full Text] [Related]

  • 38. Reduction in the diabetogenic effect of alloxan in mice by treatment with the antineoplastic agent ICRF-187.
    El-Hage AN, Herman EH, Ferrans VJ.
    Res Commun Chem Pathol Pharmacol; 1981 Sep 01; 33(3):509-23. PubMed ID: 7036302
    [Abstract] [Full Text] [Related]

  • 39. Generation of hydroxyl radicals mediated by streptozotocin in pancreatic islets of mice in vitro.
    Gille L, Schott-Ohly P, Friesen N, Schulte im Walde S, Udilova N, Nowl H, Gleichmann H.
    Pharmacol Toxicol; 2002 Jun 01; 90(6):317-26. PubMed ID: 12403053
    [Abstract] [Full Text] [Related]

  • 40. Reactive oxygen species enhances endothelin-1 production of diabetic rat glomeruli in vitro and in vivo.
    Chen HC, Guh JY, Shin SJ, Tsai JH, Lai YH.
    J Lab Clin Med; 2000 Apr 01; 135(4):309-15. PubMed ID: 10779046
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.