These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
90 related items for PubMed ID: 10383226
1. Isolation of a methanogenic bacterium, Methanosarcina sp. strain FR, for its ability to degrade high concentration of perchloroethylene. Cabirol N, Villemur R, Perrier J, Jacob F, Fouillet B, Chambon P. Can J Microbiol; 1998 Dec; 44(12):1142-7. PubMed ID: 10383226 [Abstract] [Full Text] [Related]
2. Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM. Fathepure BZ, Boyd SA. Appl Environ Microbiol; 1988 Dec; 54(12):2976-80. PubMed ID: 3223763 [Abstract] [Full Text] [Related]
3. Anaerobic bacteria that dechlorinate perchloroethene. Fathepure BZ, Nengu JP, Boyd SA. Appl Environ Microbiol; 1987 Nov; 53(11):2671-4. PubMed ID: 3426224 [Abstract] [Full Text] [Related]
4. Isolation and characterization of tetrachloroethylene- and cis-1,2-dichloroethylene-dechlorinating propionibacteria. Chang YC, Ikeutsu K, Toyama T, Choi D, Kikuchi S. J Ind Microbiol Biotechnol; 2011 Oct; 38(10):1667-77. PubMed ID: 21437617 [Abstract] [Full Text] [Related]
5. Complete dechlorination of tetrachloroethene to ethene in presence of methanogenesis and acetogenesis by an anaerobic sediment microcosm. Aulenta F, Majone M, Verbo P, Tandoi V. Biodegradation; 2002 Oct; 13(6):411-24. PubMed ID: 12713133 [Abstract] [Full Text] [Related]
6. Interaction between methanogenic and sulfate-reducing microorganisms during dechlorination of a high concentration of tetrachloroethylene. Cabirol N, Jacob F, Perrier J, Fouillet B, Chambon P. J Gen Appl Microbiol; 1998 Aug; 44(4):297-301. PubMed ID: 12501425 [Abstract] [Full Text] [Related]
7. Isolation and transcriptional analysis of novel tetrachloroethene reductive dehalogenase gene from Desulfitobacterium sp. strain KBC1. Tsukagoshi N, Ezaki S, Uenaka T, Suzuki N, Kurane R. Appl Microbiol Biotechnol; 2006 Jan; 69(5):543-53. PubMed ID: 16172885 [Abstract] [Full Text] [Related]
8. Transformation of tetrachloroethylene to trichloroethylene by homoacetogenic bacteria. Terzenbach DP, Blaut M. FEMS Microbiol Lett; 1994 Oct 15; 123(1-2):213-8. PubMed ID: 7988892 [Abstract] [Full Text] [Related]
9. Enhanced PCE dechlorination by biobarrier systems under different redox conditions. Kao CM, Chen YL, Chen SC, Yeh TY, Wu WS. Water Res; 2003 Dec 15; 37(20):4885-94. PubMed ID: 14604634 [Abstract] [Full Text] [Related]
10. Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Sung Y, Fletcher KE, Ritalahti KM, Apkarian RP, Ramos-Hernández N, Sanford RA, Mesbah NM, Löffler FE. Appl Environ Microbiol; 2006 Apr 15; 72(4):2775-82. PubMed ID: 16597982 [Abstract] [Full Text] [Related]
11. Methanosarcina lacustris sp. nov., a new psychrotolerant methanogenic archaeon from anoxic lake sediments. Simankova MV, Parshina SN, Tourova TP, Kolganova TV, Zehnder AJ, Nozhevnikova AN. Syst Appl Microbiol; 2001 Nov 15; 24(3):362-7. PubMed ID: 11822671 [Abstract] [Full Text] [Related]
12. Reductive dechlorination of tetrachloroethene to trans-dichloroethene and cis-dichloroethene by PCB-dechlorinating bacterium DF-1. Miller GS, Milliken CE, Sowers KR, May HD. Environ Sci Technol; 2005 Apr 15; 39(8):2631-5. PubMed ID: 15884359 [Abstract] [Full Text] [Related]
13. Characterization of Methanosarcina mazei N2M9705 isolated from an aquaculture fishpond. Lai MC, Shu CM, Chiou MS, Hong TY, Chuang MJ, Hua JJ. Curr Microbiol; 1999 Aug 15; 39(2):79-84. PubMed ID: 10398831 [Abstract] [Full Text] [Related]
14. Isolation and quantitative detection of tetrachloroethene (PCE)-dechlorinating bacteria in unsaturated subsurface soils contaminated with chloroethenes. Yoshida N, Asahi K, Sakakibara Y, Miyake K, Katayama A. J Biosci Bioeng; 2007 Aug 15; 104(2):91-7. PubMed ID: 17884652 [Abstract] [Full Text] [Related]
15. Phylogenetic analysis of bacterial populations in an anaerobic microbial consortium capable of degrading saturation concentrations of tetrachloroethylene. Dennis PC, Sleep BE, Fulthorpe RR, Liss SN. Can J Microbiol; 2003 Jan 15; 49(1):15-27. PubMed ID: 12674344 [Abstract] [Full Text] [Related]
16. Transformation and carbon isotope fractionation of tetra- and trichloroethene to trans-dichloroethene by Dehalococcoides sp. strain CBDB1. Marco-Urrea E, Nijenhuis I, Adrian L. Environ Sci Technol; 2011 Feb 15; 45(4):1555-62. PubMed ID: 21214238 [Abstract] [Full Text] [Related]
17. Role of methanogenic and sulfate-reducing bacteria in the reductive dechlorination of tetrachloroethylene in mixed culture. Cabirol N, Perrier J, Jacob F, Fouillet B, Chambon P. Bull Environ Contam Toxicol; 1996 May 15; 56(5):817-24. PubMed ID: 8661867 [No Abstract] [Full Text] [Related]
18. Phylogenetic description of immobilized methanogenic community using real-time PCR in a fixed-bed anaerobic digester. Sawayama S, Tsukahara K, Yagishita T. Bioresour Technol; 2006 Jan 15; 97(1):69-76. PubMed ID: 16154504 [Abstract] [Full Text] [Related]
19. Aerobic biodegradation of dichloroethenes by indigenous bacteria isolated from contaminated sites in Africa. Olaniran AO, Pillay D, Pillay B. Chemosphere; 2008 Aug 15; 73(1):24-9. PubMed ID: 18635246 [Abstract] [Full Text] [Related]
20. Effect of sudden addition of PCE and bioreactor coupling to ZVI filters on performance of fluidized bed bioreactors operated in simultaneous electron acceptor modes. Moreno-Medina CU, Poggi-Varaldo HM, Breton-Deval L, Rinderknecht-Seijas N. Environ Sci Pollut Res Int; 2017 Nov 15; 24(33):25534-25549. PubMed ID: 27498752 [Abstract] [Full Text] [Related] Page: [Next] [New Search]