These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
90 related items for PubMed ID: 10383226
21. In vitro dehalogenation of tetrachloroethylene (PCE) by cell-free extracts of Clostridium bifermentans DPH-1. Chang YC, Okeke BC, Hatsu M, Takamizawa K. Bioresour Technol; 2001 Jun; 78(2):141-7. PubMed ID: 11333032 [Abstract] [Full Text] [Related]
22. A Dehalococcoides-containing co-culture that dechlorinates tetrachloroethene to trans-1,2-dichloroethene. Cheng D, Chow WL, He J. ISME J; 2010 Jan; 4(1):88-97. PubMed ID: 19657371 [Abstract] [Full Text] [Related]
23. Complete dechlorination of tetrachloroethylene by use of an anaerobic Clostridium bifermentans DPH-1 and zero-valent iron. Chang YC, Kikuchi S, Kawauchi N, Sato T, Takamizawa K. Environ Technol; 2008 Apr; 29(4):381-91. PubMed ID: 18619143 [Abstract] [Full Text] [Related]
24. Acceleration of perchloroethylene dechlorination by extracellular secretions from Microbacterium in a mixed culture containing Desulfitobacterium. Wan J, Chen C, Chen J, Miao Q, Liu Y, Ye J, Chen K, Jin Y, Tang X, Shen C. Environ Pollut; 2019 Feb; 245():651-657. PubMed ID: 30481679 [Abstract] [Full Text] [Related]
25. Purification, cloning, and sequencing of an enzyme mediating the reductive dechlorination of tetrachloroethylene (PCE) from Clostridium bifermentans DPH-1. Okeke BC, Chang YC, Hatsu M, Suzuki T, Takamizawa K. Can J Microbiol; 2001 May; 47(5):448-56. PubMed ID: 11400736 [Abstract] [Full Text] [Related]
26. Development and Characterization of PCE-to-Ethene Dechlorinating Microcosms with Contaminated River Sediment. Lee J, Lee TK. J Microbiol Biotechnol; 2016 Jan; 26(1):120-9. PubMed ID: 26502734 [Abstract] [Full Text] [Related]
27. Dechlorination of PCE in the presence of Fe0 enhanced by a mixed culture containing two Dehalococcoides strains. Rosenthal H, Adrian L, Steiof M. Chemosphere; 2004 May; 55(5):661-9. PubMed ID: 15013671 [Abstract] [Full Text] [Related]
28. Experimental evaluation and mathematical modeling of microbially enhanced tetrachloroethene (PCE) dissolution. Amos BK, Christ JA, Abriola LM, Pennell KD, Löffler FE. Environ Sci Technol; 2007 Feb 01; 41(3):963-70. PubMed ID: 17328210 [Abstract] [Full Text] [Related]
29. Methanosarcina mazei JC2, a new methanogenic strain isolated from lake sediments, that does not use H2/CO2. Cairó JJ, Clarens M, Touzel JP, Bardulet M, París JM. Microbiologia; 1992 Apr 01; 8(1):21-31. PubMed ID: 1605918 [Abstract] [Full Text] [Related]
30. Isolation of an aceticlastic strain of Methanosarcina siciliae from marine canyon sediments and emendation of the species description for Methanosarcina siciliae. Elberson MA, Sowers KR. Int J Syst Bacteriol; 1997 Oct 01; 47(4):1258-61. PubMed ID: 9336940 [Abstract] [Full Text] [Related]
31. Electrolytic methanogenic-methanotrophic coupling for tetrachloroethylene bioremediation: proof of concept. Guiot SR, Cimpoia R, Kuhn R, Alaplantive A. Environ Sci Technol; 2008 Apr 15; 42(8):3011-7. PubMed ID: 18497159 [Abstract] [Full Text] [Related]
32. Biologically-enhanced removal of PCE from NAPL source zones. Cope N, Hughes JB. Environ Sci Technol; 2001 May 15; 35(10):2014-21. PubMed ID: 11393982 [Abstract] [Full Text] [Related]
33. Enhanced dechlorination of tetrachloroethylene by zerovalent silicon in the presence of polyethylene glycol under anoxic conditions. Lee CC, Doong RA. Environ Sci Technol; 2011 Mar 15; 45(6):2301-7. PubMed ID: 21341692 [Abstract] [Full Text] [Related]
34. Anaerobic microbial reductive dechlorination of tetrachloroethene to predominately trans-1,2-dichloroethene. Griffin BM, Tiedje JM, Löffler FE. Environ Sci Technol; 2004 Aug 15; 38(16):4300-3. PubMed ID: 15382856 [Abstract] [Full Text] [Related]
35. Effects of elevated temperature on Dehalococcoides dechlorination performance and DNA and RNA biomarker abundance. Fletcher KE, Costanza J, Cruz-Garcia C, Ramaswamy NS, Pennell KD, Löffler FE. Environ Sci Technol; 2011 Jan 15; 45(2):712-8. PubMed ID: 21126083 [Abstract] [Full Text] [Related]
36. [Biodegradation of tri- and perchloroethylene in sewage waters and soils by a microbial consortium of compost and phototrophic bacteria]. Ten Khak Mun, Kirienko OA. Izv Akad Nauk Ser Biol; 2011 Jan 15; (5):625-9. PubMed ID: 22117431 [Abstract] [Full Text] [Related]
37. Factors controlling the carbon isotope fractionation of tetra- and trichloroethene during reductive dechlorination by Sulfurospirillum ssp. and Desulfitobacterium sp. strain PCE-S. Cichocka D, Siegert M, Imfeld G, Andert J, Beck K, Diekert G, Richnow HH, Nijenhuis I. FEMS Microbiol Ecol; 2007 Oct 15; 62(1):98-107. PubMed ID: 17908097 [Abstract] [Full Text] [Related]
38. Variability in microbial carbon isotope fractionation of tetra- and trichloroethene upon reductive dechlorination. Cichocka D, Imfeld G, Richnow HH, Nijenhuis I. Chemosphere; 2008 Mar 15; 71(4):639-48. PubMed ID: 18155126 [Abstract] [Full Text] [Related]
39. Biochemical and molecular characterization of a tetrachloroethene dechlorinating Desulfitobacterium sp. strain Y51: a review. Furukawa K, Suyama A, Tsuboi Y, Futagami T, Goto M. J Ind Microbiol Biotechnol; 2005 Dec 15; 32(11-12):534-41. PubMed ID: 15959725 [Abstract] [Full Text] [Related]
40. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Maymó-Gatell X, Chien Y, Gossett JM, Zinder SH. Science; 1997 Jun 06; 276(5318):1568-71. PubMed ID: 9171062 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]