These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


143 related items for PubMed ID: 10390818

  • 1. Substrate specificities of the chloromuconate cycloisomerases from Pseudomonas sp. B13, Ralstonia eutropha JMP134 and Pseudomonas sp. P51.
    Vollmer MD, Schell U, Seibert V, Lakner S, Schlömann M.
    Appl Microbiol Biotechnol; 1999 May; 51(5):598-605. PubMed ID: 10390818
    [Abstract] [Full Text] [Related]

  • 2. TfdD(II), one of the two chloromuconate cycloisomerases of Ralstonia eutropha JMP134 (pJP4), cannot efficiently convert 2-chloro- cis, cis-muconate to trans-dienelactone to allow growth on 3-chlorobenzoate.
    Laemmli CM, Schönenberger R, Suter M, Zehnder AJ, van der Meer JR.
    Arch Microbiol; 2002 Jul; 178(1):13-25. PubMed ID: 12070765
    [Abstract] [Full Text] [Related]

  • 3. Substrate specificity of and product formation by muconate cycloisomerases: an analysis of wild-type enzymes and engineered variants.
    Vollmer MD, Hoier H, Hecht HJ, Schell U, Gröning J, Goldman A, Schlömann M.
    Appl Environ Microbiol; 1998 Sep; 64(9):3290-9. PubMed ID: 9726873
    [Abstract] [Full Text] [Related]

  • 4. Inability of muconate cycloisomerases to cause dehalogenation during conversion of 2-chloro-cis,cis-muconate.
    Vollmer MD, Fischer P, Knackmuss HJ, Schlömann M.
    J Bacteriol; 1994 Jul; 176(14):4366-75. PubMed ID: 8021223
    [Abstract] [Full Text] [Related]

  • 5. Importance of different tfd genes for degradation of chloroaromatics by Ralstonia eutropha JMP134.
    Plumeier I, Pérez-Pantoja D, Heim S, González B, Pieper DH.
    J Bacteriol; 2002 Aug; 184(15):4054-64. PubMed ID: 12107121
    [Abstract] [Full Text] [Related]

  • 6. Formation of protoanemonin from 2-chloro-cis,cis-muconate by the combined action of muconate cycloisomerase and muconolactone isomerase.
    Skiba A, Hecht V, Pieper DH.
    J Bacteriol; 2002 Oct; 184(19):5402-9. PubMed ID: 12218027
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Characterization of muconate and chloromuconate cycloisomerase from Rhodococcus erythropolis 1CP: indications for functionally convergent evolution among bacterial cycloisomerases.
    Solyanikova IP, Maltseva OV, Vollmer MD, Golovleva LA, Schlömann M.
    J Bacteriol; 1995 May; 177(10):2821-6. PubMed ID: 7751292
    [Abstract] [Full Text] [Related]

  • 9. Role of tfdC(I)D(I)E(I)F(I) and tfdD(II)C(II)E(II)F(II) gene modules in catabolism of 3-chlorobenzoate by Ralstonia eutropha JMP134(pJP4).
    Pérez-Pantoja D, Guzmán L, Manzano M, Pieper DH, González B.
    Appl Environ Microbiol; 2000 Apr; 66(4):1602-8. PubMed ID: 10742248
    [Abstract] [Full Text] [Related]

  • 10. Conversion of 2-chloro-cis,cis-muconate and its metabolites 2-chloro- and 5-chloromuconolactone by chloromuconate cycloisomerases of pJP4 and pAC27.
    Vollmer MD, Schlömann M.
    J Bacteriol; 1995 May; 177(10):2938-41. PubMed ID: 7751312
    [Abstract] [Full Text] [Related]

  • 11. Cis,cis-muconate lactonizing enzyme from Trichosporon cutaneum: evidence for a novel class of cycloisomerases in eucaryotes.
    Mazur P, Pieken WA, Budihas SR, Williams SE, Wong S, Kozarich JW.
    Biochemistry; 1994 Feb 22; 33(7):1961-70. PubMed ID: 8110801
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Characterization of a gene cluster involved in 4-chlorocatechol degradation by Pseudomonas reinekei MT1.
    Cámara B, Nikodem P, Bielecki P, Bobadilla R, Junca H, Pieper DH.
    J Bacteriol; 2009 Aug 22; 191(15):4905-15. PubMed ID: 19465655
    [Abstract] [Full Text] [Related]

  • 14. Novel insights into the interplay between peripheral reactions encoded by xyl genes and the chlorocatechol pathway encoded by tfd genes for the degradation of chlorobenzoates by Ralstonia eutropha JMP134.
    Ledger T, Pieper DH, Pérez-Pantoja D, González B.
    Microbiology (Reading); 2002 Nov 22; 148(Pt 11):3431-3440. PubMed ID: 12427935
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Structural basis for the substrate specificity and the absence of dehalogenation activity in 2-chloromuconate cycloisomerase from Rhodococcus opacus 1CP.
    Kolomytseva M, Ferraroni M, Chernykh A, Golovleva L, Scozzafava A.
    Biochim Biophys Acta; 2014 Sep 22; 1844(9):1541-9. PubMed ID: 24768773
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. The chlorocatechol degradative genes, tfdT-CDEF, of Burkholderia sp. strain NK8 are involved in chlorobenzoate degradation and induced by chlorobenzoates and chlorocatechols.
    Liu S, Ogawa N, Miyashita K.
    Gene; 2001 May 02; 268(1-2):207-14. PubMed ID: 11368916
    [Abstract] [Full Text] [Related]

  • 19. The copy number of the catabolic plasmid pJP4 affects growth of Ralstonia eutropha JMP134 (pJP4) on 3-chlorobenzoate.
    Trefault N, Clément P, Manzano M, Pieper DH, González B.
    FEMS Microbiol Lett; 2002 Jun 18; 212(1):95-100. PubMed ID: 12076793
    [Abstract] [Full Text] [Related]

  • 20. The chlorocatechol-catabolic transposon Tn5707 of Alcaligenes eutrophus NH9, carrying a gene cluster highly homologous to that in the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, confers the ability to grow on 3-chlorobenzoate.
    Ogawa N, Miyashita K.
    Appl Environ Microbiol; 1999 Feb 18; 65(2):724-31. PubMed ID: 9925607
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.