These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
156 related items for PubMed ID: 10392834
1. A positron emission tomography study of self-paced finger movements at different frequencies. Kawashima R, Inoue K, Sugiura M, Okada K, Ogawa A, Fukuda H. Neuroscience; 1999; 92(1):107-12. PubMed ID: 10392834 [Abstract] [Full Text] [Related]
2. Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Shibasaki H, Sadato N, Lyshkow H, Yonekura Y, Honda M, Nagamine T, Suwazono S, Magata Y, Ikeda A, Miyazaki M. Brain; 1993 Dec; 116 ( Pt 6)():1387-98. PubMed ID: 8293277 [Abstract] [Full Text] [Related]
4. Movement- and task-related activations of motor cortical areas: a positron emission tomographic study. Remy P, Zilbovicius M, Leroy-Willig A, Syrota A, Samson Y. Ann Neurol; 1994 Jul; 36(1):19-26. PubMed ID: 8024256 [Abstract] [Full Text] [Related]
5. Changes in regional cerebral blood flow during self-paced arm and finger movements. A PET study. Kawashima R, Itoh H, Ono S, Satoh K, Furumoto S, Gotoh R, Koyama M, Yoshioka S, Takahashi T, Takahashi K, Yanagisawa T, Fukuda H. Brain Res; 1996 Apr 15; 716(1-2):141-8. PubMed ID: 8738230 [Abstract] [Full Text] [Related]
6. Self-initiated versus externally triggered movements. II. The effect of movement predictability on regional cerebral blood flow. Jenkins IH, Jahanshahi M, Jueptner M, Passingham RE, Brooks DJ. Brain; 2000 Jun 15; 123 ( Pt 6)():1216-28. PubMed ID: 10825359 [Abstract] [Full Text] [Related]
7. Functional MRI cerebral activation and deactivation during finger movement. Allison JD, Meador KJ, Loring DW, Figueroa RE, Wright JC. Neurology; 2000 Jan 11; 54(1):135-42. PubMed ID: 10636139 [Abstract] [Full Text] [Related]
8. Cortical representation of self-paced finger movement. Larsson J, Gulyás B, Roland PE. Neuroreport; 1996 Jan 31; 7(2):463-8. PubMed ID: 8730806 [Abstract] [Full Text] [Related]
9. Regional cerebral blood flow changes in human brain related to ipsilateral and contralateral complex hand movements--a PET study. Kawashima R, Matsumura M, Sadato N, Naito E, Waki A, Nakamura S, Matsunami K, Fukuda H, Yonekura Y. Eur J Neurosci; 1998 Jul 31; 10(7):2254-60. PubMed ID: 9749754 [Abstract] [Full Text] [Related]
10. Regional cerebral blood flow during voluntary arm and hand movements in human subjects. Colebatch JG, Deiber MP, Passingham RE, Friston KJ, Frackowiak RS. J Neurophysiol; 1991 Jun 31; 65(6):1392-401. PubMed ID: 1875248 [Abstract] [Full Text] [Related]
11. The functional neuroanatomy of simple and complex sequential finger movements: a PET study. Catalan MJ, Honda M, Weeks RA, Cohen LG, Hallett M. Brain; 1998 Feb 31; 121 ( Pt 2)():253-64. PubMed ID: 9549504 [Abstract] [Full Text] [Related]
12. Cerebral structures participating in motor preparation in humans: a positron emission tomography study. Deiber MP, Ibañez V, Sadato N, Hallett M. J Neurophysiol; 1996 Jan 31; 75(1):233-47. PubMed ID: 8822554 [Abstract] [Full Text] [Related]
13. Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Gerloff C, Richard J, Hadley J, Schulman AE, Honda M, Hallett M. Brain; 1998 Aug 31; 121 ( Pt 8)():1513-31. PubMed ID: 9712013 [Abstract] [Full Text] [Related]
14. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography. Winstein CJ, Grafton ST, Pohl PS. J Neurophysiol; 1997 Mar 31; 77(3):1581-94. PubMed ID: 9084621 [Abstract] [Full Text] [Related]
15. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task. Rektor I, Sochůrková D, Bocková M. Prog Brain Res; 2006 Mar 31; 159():311-30. PubMed ID: 17071240 [Abstract] [Full Text] [Related]
16. A functional magnetic resonance imaging study of paced finger tapping in children. Rivkin MJ, Vajapeyam S, Hutton C, Weiler ML, Hall EK, Wolraich DA, Yoo SS, Mulkern RV, Forbes PW, Wolff PH, Waber DP. Pediatr Neurol; 2003 Feb 31; 28(2):89-95. PubMed ID: 12699857 [Abstract] [Full Text] [Related]
17. A H(2)(15)O positron emission tomography study on mental imagery of movement sequences--the effect of modulating sequence length and direction. Boecker H, Ceballos-Baumann AO, Bartenstein P, Dagher A, Forster K, Haslinger B, Brooks DJ, Schwaiger M, Conrad B. Neuroimage; 2002 Oct 31; 17(2):999-1009. PubMed ID: 12377173 [Abstract] [Full Text] [Related]
18. Internally simulated movement sensations during motor imagery activate cortical motor areas and the cerebellum. Naito E, Kochiyama T, Kitada R, Nakamura S, Matsumura M, Yonekura Y, Sadato N. J Neurosci; 2002 May 01; 22(9):3683-91. PubMed ID: 11978844 [Abstract] [Full Text] [Related]
19. Relation between cerebral activity and force in the motor areas of the human brain. Dettmers C, Fink GR, Lemon RN, Stephan KM, Passingham RE, Silbersweig D, Holmes A, Ridding MC, Brooks DJ, Frackowiak RS. J Neurophysiol; 1995 Aug 01; 74(2):802-15. PubMed ID: 7472384 [Abstract] [Full Text] [Related]
20. Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: investigations with H2 15O PET. Boecker H, Dagher A, Ceballos-Baumann AO, Passingham RE, Samuel M, Friston KJ, Poline J, Dettmers C, Conrad B, Brooks DJ. J Neurophysiol; 1998 Feb 01; 79(2):1070-80. PubMed ID: 9463462 [Abstract] [Full Text] [Related] Page: [Next] [New Search]