These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


169 related items for PubMed ID: 10404971

  • 1. Dynamics of single dye molecules observed by confocal imaging and spectroscopy.
    Weber MA, Stracke F, Meixner AJ.
    Cytometry; 1999 Jul 01; 36(3):217-23. PubMed ID: 10404971
    [Abstract] [Full Text] [Related]

  • 2. Acidity effects on the fluorescence properties and adsorptive behavior of rhodamine 6G molecules at the air-water interface studied with confocal fluorescence microscopy.
    Zheng XY, Wachi M, Harata A, Hatano Y.
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Apr 01; 60(5):1085-90. PubMed ID: 15084327
    [Abstract] [Full Text] [Related]

  • 3. Fluorescence correlation spectroscopy as a tool to investigate single molecule probe dynamics in thin polymer films.
    Casoli A, Schönhoff M.
    Biol Chem; 2001 Mar 01; 382(3):363-9. PubMed ID: 11347882
    [Abstract] [Full Text] [Related]

  • 4. Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy.
    Eggeling C, Volkmer A, Seidel CA.
    Chemphyschem; 2005 May 01; 6(5):791-804. PubMed ID: 15884061
    [Abstract] [Full Text] [Related]

  • 5. Orientational and dynamical heterogeneity of rhodamine 6G terminally attached to a DNA helix revealed by NMR and single-molecule fluorescence spectroscopy.
    Neubauer H, Gaiko N, Berger S, Schaffer J, Eggeling C, Tuma J, Verdier L, Seidel CA, Griesinger C, Volkmer A.
    J Am Chem Soc; 2007 Oct 24; 129(42):12746-55. PubMed ID: 17900110
    [Abstract] [Full Text] [Related]

  • 6. Study of the adsorptive behavior of water-soluble dye molecules (rhodamine 6G) at the air-water interface using confocal fluorescence microscope.
    Zheng XY, Harata A, Ogawa T.
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Feb 24; 57(2):315-22. PubMed ID: 11206566
    [Abstract] [Full Text] [Related]

  • 7. Triplet-state investigations of fluorescent dyes at dielectric interfaces using total internal reflection fluorescence correlation spectroscopy.
    Blom H, Chmyrov A, Hassler K, Davis LM, Widengren J.
    J Phys Chem A; 2009 May 14; 113(19):5554-66. PubMed ID: 19374408
    [Abstract] [Full Text] [Related]

  • 8. Time-resolved fluorescence spectroscopic and scanning near-field optical microscopic studies of rhodamine dye adsorbed in cationic Langmuir-Blodgett films.
    Ray K, Nakahara H, Sakamoto A.
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jan 01; 61(1-2):103-7. PubMed ID: 15556427
    [Abstract] [Full Text] [Related]

  • 9. New fluorinated rhodamines for optical microscopy and nanoscopy.
    Mitronova GY, Belov VN, Bossi ML, Wurm CA, Meyer L, Medda R, Moneron G, Bretschneider S, Eggeling C, Jakobs S, Hell SW.
    Chemistry; 2010 Apr 19; 16(15):4477-88. PubMed ID: 20309973
    [Abstract] [Full Text] [Related]

  • 10. Solid state dye lasers: rhodamines in silica-zirconia materials.
    Schultheiss S, Yariv E, Reisfeld R, Breuer HD.
    Photochem Photobiol Sci; 2002 May 19; 1(5):320-3. PubMed ID: 12653469
    [Abstract] [Full Text] [Related]

  • 11. [Fluorescence enhancement and laser behavior of Rhodamine 6G in micell].
    Zhong X, Yang J, Ha Y, Meng J, Li Y.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Aug 19; 21(4):450-3. PubMed ID: 12945258
    [Abstract] [Full Text] [Related]

  • 12. Formation of various bicolor fluorescent micropatterns on a single polymer film based on concurrent photobleaching and photobase generation.
    Chae KH, Kim HS.
    Macromol Rapid Commun; 2015 Mar 19; 36(6):558-65. PubMed ID: 25676680
    [Abstract] [Full Text] [Related]

  • 13. Direct measurement of single-molecule diffusion and photodecomposition in free solution.
    Xu XH, Yeung ES.
    Science; 1997 Feb 21; 275(5303):1106-9. PubMed ID: 9027307
    [Abstract] [Full Text] [Related]

  • 14. Highly fluorescent rhodamine B nanoparticles entrapped in hybrid glasses.
    Gutiérrez MC, Hortigüela MJ, Ferrer ML, del Monte F.
    Langmuir; 2007 Feb 13; 23(4):2175-9. PubMed ID: 17279710
    [Abstract] [Full Text] [Related]

  • 15. Light-emitting-diode-induced fluorescence detection of fluorescent dyes for capillary electrophoresis microchip with cross-polarization method.
    Yang X, Yan W, Liu Z, Lv H.
    Appl Opt; 2012 Apr 10; 51(11):1694-700. PubMed ID: 22505159
    [Abstract] [Full Text] [Related]

  • 16. Probing individual molecules with confocal fluorescence microscopy.
    Nie S, Chiu DT, Zare RN.
    Science; 1994 Nov 11; 266(5187):1018-21. PubMed ID: 7973650
    [Abstract] [Full Text] [Related]

  • 17. Two-photon interactions at single fluorescent molecule level.
    Cannone F, Chirico G, Diaspro A.
    J Biomed Opt; 2003 Jul 11; 8(3):391-5. PubMed ID: 12880344
    [Abstract] [Full Text] [Related]

  • 18. Optical properties of Rh 6G dye in liquid and solid polymer.
    Dwivedi Y, Rai SB, Thakur SN.
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Mar 11; 69(3):789-93. PubMed ID: 17602863
    [Abstract] [Full Text] [Related]

  • 19. Two-photon thermal bleaching of single fluorescent molecules.
    Chirico G, Cannone F, Baldini G, Diaspro A.
    Biophys J; 2003 Jan 11; 84(1):588-98. PubMed ID: 12524312
    [Abstract] [Full Text] [Related]

  • 20. Three-dimensional imaging of rhodamine 123 fluorescence distribution in human melanoma cells by means of confocal laser scanning microscopy.
    Porwol T, Merten E, Opitz N, Acker H.
    Acta Anat (Basel); 1996 Jan 11; 157(2):116-25. PubMed ID: 9142334
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.