These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


221 related items for PubMed ID: 10406134

  • 21. A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons.
    Jaffe DB, Brenner R.
    J Neurophysiol; 2018 Apr 01; 119(4):1506-1520. PubMed ID: 29357445
    [Abstract] [Full Text] [Related]

  • 22. Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F, Bayliss DA, Berger AJ.
    J Neurophysiol; 1993 Jun 01; 69(6):2150-63. PubMed ID: 8350136
    [Abstract] [Full Text] [Related]

  • 23. Contribution of the low-threshold T-type calcium current in generating the post-spike depolarizing afterpotential in dentate granule neurons of immature rats.
    Zhang L, Valiante TA, Carlen PL.
    J Neurophysiol; 1993 Jul 01; 70(1):223-31. PubMed ID: 8395576
    [Abstract] [Full Text] [Related]

  • 24. Characterization of carbachol-induced rhythmic bursting discharges in neurons from guinea pig lateral septum slices.
    Carette B.
    J Neurophysiol; 1998 Sep 01; 80(3):1042-55. PubMed ID: 9744920
    [Abstract] [Full Text] [Related]

  • 25. Quantitative assessment of the distributions of membrane conductances involved in action potential backpropagation along basal dendrites.
    Acker CD, Antic SD.
    J Neurophysiol; 2009 Mar 01; 101(3):1524-41. PubMed ID: 19118105
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels.
    Traub RD, Buhl EH, Gloveli T, Whittington MA.
    J Neurophysiol; 2003 Feb 01; 89(2):909-21. PubMed ID: 12574468
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Voltage-dependent ionic currents in solitary horizontal cells isolated from cat retina.
    Ueda Y, Kaneko A, Kaneda M.
    J Neurophysiol; 1992 Oct 01; 68(4):1143-50. PubMed ID: 1279133
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Low-voltage-activated calcium current does not regulate the firing behavior in paired mechanosensory neurons with different adaptation properties.
    Sekizawa SI, French AS, Torkkeli PH.
    J Neurophysiol; 2000 Feb 01; 83(2):746-53. PubMed ID: 10669490
    [Abstract] [Full Text] [Related]

  • 34. An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice.
    De Schutter E, Bower JM.
    J Neurophysiol; 1994 Jan 01; 71(1):375-400. PubMed ID: 7512629
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Modulation of bursts and high-threshold calcium spikes in neurons of rat auditory thalamus.
    Tennigkeit F, Schwarz DW, Puil E.
    Neuroscience; 1998 Apr 01; 83(4):1063-73. PubMed ID: 9502246
    [Abstract] [Full Text] [Related]

  • 39. Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons.
    Raman IM, Bean BP.
    J Neurosci; 1999 Mar 01; 19(5):1663-74. PubMed ID: 10024353
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.