These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


272 related items for PubMed ID: 10406793

  • 1. Structural basis for the specificity of ubiquitin C-terminal hydrolases.
    Johnston SC, Riddle SM, Cohen RE, Hill CP.
    EMBO J; 1999 Jul 15; 18(14):3877-87. PubMed ID: 10406793
    [Abstract] [Full Text] [Related]

  • 2. Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shift perturbation.
    Rajesh S, Sakamoto T, Iwamoto-Sugai M, Shibata T, Kohno T, Ito Y.
    Biochemistry; 1999 Jul 20; 38(29):9242-53. PubMed ID: 10413498
    [Abstract] [Full Text] [Related]

  • 3. Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate.
    Misaghi S, Galardy PJ, Meester WJ, Ovaa H, Ploegh HL, Gaudet R.
    J Biol Chem; 2005 Jan 14; 280(2):1512-20. PubMed ID: 15531586
    [Abstract] [Full Text] [Related]

  • 4. Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution.
    Johnston SC, Larsen CN, Cook WJ, Wilkinson KD, Hill CP.
    EMBO J; 1997 Jul 01; 16(13):3787-96. PubMed ID: 9233788
    [Abstract] [Full Text] [Related]

  • 5. The binding site for UCH-L3 on ubiquitin: mutagenesis and NMR studies on the complex between ubiquitin and UCH-L3.
    Wilkinson KD, Laleli-Sahin E, Urbauer J, Larsen CN, Shih GH, Haas AL, Walsh ST, Wand AJ.
    J Mol Biol; 1999 Sep 03; 291(5):1067-77. PubMed ID: 10518943
    [Abstract] [Full Text] [Related]

  • 6. Kinetic and mechanistic studies on the hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating enzymes.
    Dang LC, Melandri FD, Stein RL.
    Biochemistry; 1998 Feb 17; 37(7):1868-79. PubMed ID: 9485312
    [Abstract] [Full Text] [Related]

  • 7. Substrate binding and catalysis by ubiquitin C-terminal hydrolases: identification of two active site residues.
    Larsen CN, Price JS, Wilkinson KD.
    Biochemistry; 1996 May 28; 35(21):6735-44. PubMed ID: 8639624
    [Abstract] [Full Text] [Related]

  • 8. Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases.
    Larsen CN, Krantz BA, Wilkinson KD.
    Biochemistry; 1998 Mar 10; 37(10):3358-68. PubMed ID: 9521656
    [Abstract] [Full Text] [Related]

  • 9. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes.
    Wilkinson KD.
    FASEB J; 1997 Dec 10; 11(14):1245-56. PubMed ID: 9409543
    [Abstract] [Full Text] [Related]

  • 10. In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome.
    Amerik AYu, Swaminathan S, Krantz BA, Wilkinson KD, Hochstrasser M.
    EMBO J; 1997 Aug 15; 16(16):4826-38. PubMed ID: 9305625
    [Abstract] [Full Text] [Related]

  • 11. Cleavage of the C-terminus of NEDD8 by UCH-L3.
    Wada H, Kito K, Caskey LS, Yeh ET, Kamitani T.
    Biochem Biophys Res Commun; 1998 Oct 29; 251(3):688-92. PubMed ID: 9790970
    [Abstract] [Full Text] [Related]

  • 12. An NMR analysis of ubiquitin recognition by yeast ubiquitin hydrolase: evidence for novel substrate recognition by a cysteine protease.
    Sakamoto T, Tanaka T, Ito Y, Rajesh S, Iwamoto-Sugai M, Kodera Y, Tsuchida N, Shibata T, Kohno T.
    Biochemistry; 1999 Sep 07; 38(36):11634-42. PubMed ID: 10512618
    [Abstract] [Full Text] [Related]

  • 13. Identification and characterization of DEN1, a deneddylase of the ULP family.
    Gan-Erdene T, Nagamalleswari K, Yin L, Wu K, Pan ZQ, Wilkinson KD.
    J Biol Chem; 2003 Aug 01; 278(31):28892-900. PubMed ID: 12759362
    [Abstract] [Full Text] [Related]

  • 14. A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14.
    Borodovsky A, Kessler BM, Casagrande R, Overkleeft HS, Wilkinson KD, Ploegh HL.
    EMBO J; 2001 Sep 17; 20(18):5187-96. PubMed ID: 11566882
    [Abstract] [Full Text] [Related]

  • 15. Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain.
    Nishio K, Kim SW, Kawai K, Mizushima T, Yamane T, Hamazaki J, Murata S, Tanaka K, Morimoto Y.
    Biochem Biophys Res Commun; 2009 Dec 18; 390(3):855-60. PubMed ID: 19836345
    [Abstract] [Full Text] [Related]

  • 16. Purification and characterization of UBP6, a new ubiquitin-specific protease in Saccharomyces cerevisiae.
    Park KC, Woo SK, Yoo YJ, Wyndham AM, Baker RT, Chung CH.
    Arch Biochem Biophys; 1997 Nov 01; 347(1):78-84. PubMed ID: 9344467
    [Abstract] [Full Text] [Related]

  • 17. Structural variability of the ubiquitin specific protease DUSP-UBL double domains.
    Elliott PR, Liu H, Pastok MW, Grossmann GJ, Rigden DJ, Clague MJ, Urbé S, Barsukov IL.
    FEBS Lett; 2011 Nov 04; 585(21):3385-90. PubMed ID: 22001210
    [Abstract] [Full Text] [Related]

  • 18. Structure of a complex between Nedd8 and the Ulp/Senp protease family member Den1.
    Reverter D, Wu K, Erdene TG, Pan ZQ, Wilkinson KD, Lima CD.
    J Mol Biol; 2005 Jan 07; 345(1):141-51. PubMed ID: 15567417
    [Abstract] [Full Text] [Related]

  • 19. Crystal structure of the Saccharomyces cerevisiae ubiquitin-conjugating enzyme Rad6 at 2.6 A resolution.
    Worthylake DK, Prakash S, Prakash L, Hill CP.
    J Biol Chem; 1998 Mar 13; 273(11):6271-6. PubMed ID: 9497353
    [Abstract] [Full Text] [Related]

  • 20. Molecular cloning of chick UCH-6 which shares high similarity with human UCH-L3: its unusual substrate specificity and tissue distribution.
    Baek SH, Yoo YJ, Tanaka K, Chung CH.
    Biochem Biophys Res Commun; 1999 Oct 14; 264(1):235-40. PubMed ID: 10527871
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.