These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
295 related items for PubMed ID: 10408249
1. Intrarenal angiotensin converting enzyme inhibition in spontaneously hypertensive rats. Aihara H, Ogawa H, Kasuya A, Yoshida M, Suzuki-Kusaba M, Hisa H, Satoh S. Eur J Pharmacol; 1999 May 28; 373(1):35-40. PubMed ID: 10408249 [Abstract] [Full Text] [Related]
2. Differing effects of enalapril and losartan on renal medullary blood flow and renal interstitial hydrostatic pressure in spontaneously hypertensive rats. Dukacz SA, Kline RL. J Hypertens; 1999 Sep 28; 17(9):1345-52. PubMed ID: 10489114 [Abstract] [Full Text] [Related]
3. Renal tissue angiotensins during converting enzyme inhibition in the spontaneously hypertensive rat. Grima M, Ingert C, Michel B, Barthelmebs M, Imbs JL. Clin Exp Hypertens; 1997 Sep 28; 19(5-6):671-85. PubMed ID: 9247747 [Abstract] [Full Text] [Related]
5. The persistent effect of long-term enalapril on pressure natriuresis in spontaneously hypertensive rats. Dukacz SA, Adams MA, Kline RL. Am J Physiol; 1997 Jul 28; 273(1 Pt 2):F104-12. PubMed ID: 9249597 [Abstract] [Full Text] [Related]
6. Role of angiotensin II in the regulation of a novel vascular modulator, hepatocyte growth factor (HGF), in experimental hypertensive rats. Nakano N, Moriguchi A, Morishita R, Kida I, Tomita N, Matsumoto K, Nakamura T, Higaki J, Ogihara T. Hypertension; 1997 Dec 28; 30(6):1448-54. PubMed ID: 9403566 [Abstract] [Full Text] [Related]
7. Abnormal renal medullary response to angiotensin II in SHR is corrected by long-term enalapril treatment. Dukacz SA, Feng MG, Yang LF, Lee RM, Kline RL. Am J Physiol Regul Integr Comp Physiol; 2001 Apr 28; 280(4):R1076-84. PubMed ID: 11247830 [Abstract] [Full Text] [Related]
8. Effects of YM358, an angiotensin II type 1 (AT1) receptor antagonist, and enalapril on blood pressure and vasoconstriction in two renal hypertension models. Tokioka T, Shibasaki M, Fujimori A, Matsuda-Satoh Y, Uchida W, Inagaki O, Yanagisawa I. Biol Pharm Bull; 2000 Feb 28; 23(2):174-81. PubMed ID: 10706380 [Abstract] [Full Text] [Related]
9. Blockade of the renin-angiotensin system improves cerebral microcirculatory perfusion in diabetic hypertensive rats. Estato V, Obadia N, Carvalho-Tavares J, Freitas FS, Reis P, Castro-Faria Neto H, Lessa MA, Tibiriçá E. Microvasc Res; 2013 May 28; 87():41-9. PubMed ID: 23466285 [Abstract] [Full Text] [Related]
10. Angiotensin-converting enzyme inhibition augments the expression of rat elastase-2, an angiotensin II-forming enzyme. Becari C, Teixeira FR, Oliveira EB, Salgado MC. Am J Physiol Heart Circ Physiol; 2011 Aug 28; 301(2):H565-70. PubMed ID: 21602471 [Abstract] [Full Text] [Related]
11. [Renal tissue angiotensins during converting enzyme inhibition of angiotensin I in spontaneously hypertensive rat]. Ingert C, Grima M, Michel B, Barthelmebs M, Imbs JL. Arch Mal Coeur Vaiss; 1997 Aug 28; 90(8):1135-41. PubMed ID: 9404423 [Abstract] [Full Text] [Related]
12. Effects of captopril on the renin angiotensin system, oxidative stress, and endothelin in normal and hypertensive rats. Bolterman RJ, Manriquez MC, Ortiz Ruiz MC, Juncos LA, Romero JC. Hypertension; 2005 Oct 28; 46(4):943-7. PubMed ID: 16087785 [Abstract] [Full Text] [Related]
13. Effect of chronic captopril treatment on circulating and tissue renin-angiotensin system in SHR rats. Hu WY, Chen DG, Chen SC, Jin XQ, Wang HJ. Zhongguo Yao Li Xue Bao; 1996 Nov 28; 17(6):507-12. PubMed ID: 9863143 [Abstract] [Full Text] [Related]
14. Gender differences in development of hypertension in spontaneously hypertensive rats: role of the renin-angiotensin system. Reckelhoff JF, Zhang H, Srivastava K. Hypertension; 2000 Jan 28; 35(1 Pt 2):480-3. PubMed ID: 10642345 [Abstract] [Full Text] [Related]
15. Long-term adrenomedullin infusion improves survival in malignant hypertensive rats. Mori Y, Nishikimi T, Kobayashi N, Ono H, Kangawa K, Matsuoka H. Hypertension; 2002 Jul 28; 40(1):107-13. PubMed ID: 12105147 [Abstract] [Full Text] [Related]
16. Role of chymase-dependent angiotensin II formation in regulating blood pressure in spontaneously hypertensive rats. Kirimura K, Takai S, Jin D, Muramatsu M, Kishi K, Yoshikawa K, Nakabayashi M, Mino Y, Miyazaki M. Hypertens Res; 2005 May 28; 28(5):457-64. PubMed ID: 16156510 [Abstract] [Full Text] [Related]
17. Effects of enalapril on the expression of cardiac angiotensin-converting enzyme and angiotensin-converting enzyme 2 in spontaneously hypertensive rats. Yang Z, Yu X, Cheng L, Miao LY, Li HX, Han LH, Jiang WP. Arch Cardiovasc Dis; 2013 Apr 28; 106(4):196-201. PubMed ID: 23706365 [Abstract] [Full Text] [Related]
18. Comparison of the actions of the angiotensin-converting enzyme inhibitors enalapril and S-9490-3 in sodium-deplete and sodium-replete spontaneously hypertensive rats. DiNicolantonio R, Doyle AE. J Cardiovasc Pharmacol; 1985 Apr 28; 7(5):937-42. PubMed ID: 2413304 [Abstract] [Full Text] [Related]
19. Primacy of angiotensin converting enzyme in angiotensin-(1-12) metabolism. Moniwa N, Varagic J, Simington SW, Ahmad S, Nagata S, Voncannon JL, Ferrario CM. Am J Physiol Heart Circ Physiol; 2013 Sep 01; 305(5):H644-50. PubMed ID: 23812388 [Abstract] [Full Text] [Related]