These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
240 related items for PubMed ID: 10409823
1. High resolution structure and sequence of T. aurantiacus xylanase I: implications for the evolution of thermostability in family 10 xylanases and enzymes with (beta)alpha-barrel architecture. Lo Leggio L, Kalogiannis S, Bhat MK, Pickersgill RW. Proteins; 1999 Aug 15; 36(3):295-306. PubMed ID: 10409823 [Abstract] [Full Text] [Related]
2. Crystal structure at 1.8 A resolution and proposed amino acid sequence of a thermostable xylanase from Thermoascus aurantiacus. Natesh R, Bhanumoorthy P, Vithayathil PJ, Sekar K, Ramakumar S, Viswamitra MA. J Mol Biol; 1999 May 21; 288(5):999-1012. PubMed ID: 10329194 [Abstract] [Full Text] [Related]
3. Thermophilic xylanase from Thermomyces lanuginosus: high-resolution X-ray structure and modeling studies. Gruber K, Klintschar G, Hayn M, Schlacher A, Steiner W, Kratky C. Biochemistry; 1998 Sep 29; 37(39):13475-85. PubMed ID: 9753433 [Abstract] [Full Text] [Related]
4. The tertiary structure at 1.59 A resolution and the proposed amino acid sequence of a family-11 xylanase from the thermophilic fungus Paecilomyces varioti bainier. Kumar PR, Eswaramoorthy S, Vithayathil PJ, Viswamitra MA. J Mol Biol; 2000 Jan 21; 295(3):581-93. PubMed ID: 10623548 [Abstract] [Full Text] [Related]
5. First crystallographic structure of a xylanase from glycoside hydrolase family 5: implications for catalysis. Larson SB, Day J, Barba de la Rosa AP, Keen NT, McPherson A. Biochemistry; 2003 Jul 22; 42(28):8411-22. PubMed ID: 12859186 [Abstract] [Full Text] [Related]
6. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability. Christodoulou E, Rypniewski WR, Vorgias CR. Extremophiles; 2003 Apr 22; 7(2):111-22. PubMed ID: 12664263 [Abstract] [Full Text] [Related]
7. Structural basis of the properties of an industrially relevant thermophilic xylanase. Harris GW, Pickersgill RW, Connerton I, Debeire P, Touzel JP, Breton C, Pérez S. Proteins; 1997 Sep 22; 29(1):77-86. PubMed ID: 9294868 [Abstract] [Full Text] [Related]
8. Homology model of a novel xylanase: molecular basis for high-thermostability and alkaline stability. Mande SS, Gupta N, Ghosh A, Mande SC. J Biomol Struct Dyn; 2000 Aug 22; 18(1):137-44. PubMed ID: 11021658 [Abstract] [Full Text] [Related]
9. Thermostable xylanase from Thermoascus aurantiacus at ultrahigh resolution (0.89 A) at 100 K and atomic resolution (1.11 A) at 293 K refined anisotropically to small-molecule accuracy. Natesh R, Manikandan K, Bhanumoorthy P, Viswamitra MA, Ramakumar S. Acta Crystallogr D Biol Crystallogr; 2003 Jan 22; 59(Pt 1):105-17. PubMed ID: 12499546 [Abstract] [Full Text] [Related]
10. The primary structure of xylanase from Thermoascus aurantiacus. Srinivasa BR, Swaminathan KR, Ganapathy C, Roy RP, Murthy SK, Vithayathil PJ. Protein Seq Data Anal; 1991 Jul 22; 4(1):15-20. PubMed ID: 1924265 [Abstract] [Full Text] [Related]
11. Crystal structure of Streptomyces olivaceoviridis E-86 beta-xylanase containing xylan-binding domain. Fujimoto Z, Kuno A, Kaneko S, Yoshida S, Kobayashi H, Kusakabe I, Mizuno H. J Mol Biol; 2000 Jul 14; 300(3):575-85. PubMed ID: 10884353 [Abstract] [Full Text] [Related]
13. Homologous xylanases from Clostridium thermocellum: evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes. Fernandes AC, Fontes CM, Gilbert HJ, Hazlewood GP, Fernandes TH, Ferreira LM. Biochem J; 1999 Aug 15; 342 ( Pt 1)(Pt 1):105-10. PubMed ID: 10432306 [Abstract] [Full Text] [Related]
14. Xylanase homology modeling using the inverse protein folding approach. Chen X, Whitmire D, Bowen JP. Protein Sci; 1996 Apr 15; 5(4):705-8. PubMed ID: 8845760 [Abstract] [Full Text] [Related]
15. Xylanase II from an alkaliphilic thermophilic Bacillus with a distinctly different structure from other xylanases: evolutionary relationship to alkaliphilic xylanases. Kulkarni N, Lakshmikumaran M, Rao M. Biochem Biophys Res Commun; 1999 Oct 05; 263(3):640-5. PubMed ID: 10512731 [Abstract] [Full Text] [Related]
16. An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation. Mamo G, Thunnissen M, Hatti-Kaul R, Mattiasson B. Biochimie; 2009 Sep 05; 91(9):1187-96. PubMed ID: 19567261 [Abstract] [Full Text] [Related]
17. Structure-specificity relationships of an intracellular xylanase from Geobacillus stearothermophilus. Solomon V, Teplitsky A, Shulami S, Zolotnitsky G, Shoham Y, Shoham G. Acta Crystallogr D Biol Crystallogr; 2007 Aug 05; 63(Pt 8):845-59. PubMed ID: 17642511 [Abstract] [Full Text] [Related]
18. Structure determination of the extracellular xylanase from Geobacillus stearothermophilus by selenomethionyl MAD phasing. Teplitsky A, Mechaly A, Stojanoff V, Sainz G, Golan G, Feinberg H, Gilboa R, Reiland V, Zolotnitsky G, Shallom D, Thompson A, Shoham Y, Shoham G. Acta Crystallogr D Biol Crystallogr; 2004 May 05; 60(Pt 5):836-48. PubMed ID: 15103129 [Abstract] [Full Text] [Related]
19. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. Joshi MD, Sidhu G, Pot I, Brayer GD, Withers SG, McIntosh LP. J Mol Biol; 2000 May 26; 299(1):255-79. PubMed ID: 10860737 [Abstract] [Full Text] [Related]
20. Crystal structure at 2.0 A resolution of phosphoribosyl anthranilate isomerase from the hyperthermophile Thermotoga maritima: possible determinants of protein stability. Hennig M, Sterner R, Kirschner K, Jansonius JN. Biochemistry; 1997 May 20; 36(20):6009-16. PubMed ID: 9166771 [Abstract] [Full Text] [Related] Page: [Next] [New Search]