These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


196 related items for PubMed ID: 10412901

  • 1. Transgenic tomato plants with decreased sucrose synthase are unaltered in starch and sugar accumulation in the fruit.
    Chengappa S, Guilleroux M, Phillips W, Shields R.
    Plant Mol Biol; 1999 May; 40(2):213-21. PubMed ID: 10412901
    [Abstract] [Full Text] [Related]

  • 2. A role for 'futile cycles' involving invertase and sucrose synthase in sucrose metabolism of tomato fruit.
    Nguyen-Quoc B, Foyer CH.
    J Exp Bot; 2001 May; 52(358):881-9. PubMed ID: 11432905
    [Abstract] [Full Text] [Related]

  • 3. Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit.
    D'Aoust MA, Yelle S, Nguyen-Quoc B.
    Plant Cell; 1999 Dec; 11(12):2407-18. PubMed ID: 10590167
    [Abstract] [Full Text] [Related]

  • 4. Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit.
    Klann EM, Hall B, Bennett AB.
    Plant Physiol; 1996 Nov; 112(3):1321-30. PubMed ID: 8938422
    [Abstract] [Full Text] [Related]

  • 5. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.).
    Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U.
    Plant J; 1995 Jan; 7(1):97-107. PubMed ID: 7894514
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Antisense repression of sucrose synthase in carrot (Daucus carota L.) affects growth rather than sucrose partitioning.
    Tang GQ, Sturm A.
    Plant Mol Biol; 1999 Nov; 41(4):465-79. PubMed ID: 10608657
    [Abstract] [Full Text] [Related]

  • 8. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity.
    Albacete A, Cantero-Navarro E, Balibrea ME, Großkinsky DK, de la Cruz González M, Martínez-Andújar C, Smigocki AC, Roitsch T, Pérez-Alfocea F.
    J Exp Bot; 2014 Nov; 65(20):6081-95. PubMed ID: 25170099
    [Abstract] [Full Text] [Related]

  • 9. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene.
    Sagor GH, Berberich T, Tanaka S, Nishiyama M, Kanayama Y, Kojima S, Muramoto K, Kusano T.
    Plant Biotechnol J; 2016 Apr; 14(4):1116-26. PubMed ID: 26402509
    [Abstract] [Full Text] [Related]

  • 10. Impact of elevated cytosolic and apoplastic invertase activity on carbon metabolism during potato tuber development.
    Hajirezaei MR, Takahata Y, Trethewey RN, Willmitzer L, Sonnewald U.
    J Exp Bot; 2000 Feb; 51 Spec No():439-45. PubMed ID: 10938852
    [Abstract] [Full Text] [Related]

  • 11. Activation of small heat shock protein (SlHSP17.7) gene by cell wall invertase inhibitor (SlCIF1) gene involved in sugar metabolism in tomato.
    Zhang N, Shi J, Zhao H, Jiang J.
    Gene; 2018 Dec 30; 679():90-99. PubMed ID: 30176314
    [Abstract] [Full Text] [Related]

  • 12. Systematic analysis of the sugar accumulation mechanism in sucrose- and hexose- accumulating cherry tomato fruits.
    Sun L, Wang J, Lian L, Song J, Du X, Liu W, Zhao W, Yang L, Li C, Qin Y, Yang R.
    BMC Plant Biol; 2022 Jun 22; 22(1):303. PubMed ID: 35729535
    [Abstract] [Full Text] [Related]

  • 13. Expression of a heterologous SnRK1 in tomato increases carbon assimilation, nitrogen uptake and modifies fruit development.
    Wang X, Peng F, Li M, Yang L, Li G.
    J Plant Physiol; 2012 Aug 15; 169(12):1173-82. PubMed ID: 22727046
    [Abstract] [Full Text] [Related]

  • 14. Sucrose Synthase, Starch Accumulation, and Tomato Fruit Sink Strength.
    Wang F, Sanz A, Brenner ML, Smith A.
    Plant Physiol; 1993 Jan 15; 101(1):321-327. PubMed ID: 12231688
    [Abstract] [Full Text] [Related]

  • 15. Fruit carbohydrate metabolism in an introgression line of tomato with increased fruit soluble solids.
    Baxter CJ, Carrari F, Bauke A, Overy S, Hill SA, Quick PW, Fernie AR, Sweetlove LJ.
    Plant Cell Physiol; 2005 Mar 15; 46(3):425-37. PubMed ID: 15695458
    [Abstract] [Full Text] [Related]

  • 16. Inhibition of chloroplastic fructose 1,6-bisphosphatase in tomato fruits leads to decreased fruit size, but only small changes in carbohydrate metabolism.
    Obiadalla-Ali H, Fernie AR, Lytovchenko A, Kossmann J, Lloyd JR.
    Planta; 2004 Jul 15; 219(3):533-40. PubMed ID: 15060828
    [Abstract] [Full Text] [Related]

  • 17. Production of high-starch, low-glucose potatoes through over-expression of the metabolic regulator SnRK1.
    McKibbin RS, Muttucumaru N, Paul MJ, Powers SJ, Burrell MM, Coates S, Purcell PC, Tiessen A, Geigenberger P, Halford NG.
    Plant Biotechnol J; 2006 Jul 15; 4(4):409-18. PubMed ID: 17177806
    [Abstract] [Full Text] [Related]

  • 18. MdERDL6-mediated glucose efflux to the cytosol promotes sugar accumulation in the vacuole through up-regulating TSTs in apple and tomato.
    Zhu L, Li B, Wu L, Li H, Wang Z, Wei X, Ma B, Zhang Y, Ma F, Ruan YL, Li M.
    Proc Natl Acad Sci U S A; 2021 Jan 05; 118(1):. PubMed ID: 33443220
    [Abstract] [Full Text] [Related]

  • 19. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit.
    Li Z, Palmer WM, Martin AP, Wang R, Rainsford F, Jin Y, Patrick JW, Yang Y, Ruan YL.
    J Exp Bot; 2012 Feb 05; 63(3):1155-66. PubMed ID: 22105847
    [Abstract] [Full Text] [Related]

  • 20. Overexpression of sucrose transporter gene PbSUT2 from Pyrus bretschneideri, enhances sucrose content in Solanum lycopersicum fruit.
    Wang LF, Qi XX, Huang XS, Xu LL, Jin C, Wu J, Zhang SL.
    Plant Physiol Biochem; 2016 Aug 05; 105():150-161. PubMed ID: 27105422
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.