These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
125 related items for PubMed ID: 10413460
1. Aminoethylcysteine can replace the function of the essential active site lysine of Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl coenzyme A reductase. Bochar DA, Tabernero L, Stauffacher CV, Rodwell VW. Biochemistry; 1999 Jul 13; 38(28):8879-83. PubMed ID: 10413460 [Abstract] [Full Text] [Related]
2. Role of cysteine residues in Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl-CoA reductase. Site-directed mutagenesis and characterization of the mutant enzymes. Jordan-Starck TC, Rodwell VW. J Biol Chem; 1989 Oct 25; 264(30):17919-23. PubMed ID: 2681186 [Abstract] [Full Text] [Related]
3. Protein engineering of the HMG-CoA reductase of Pseudomonas mevalonii. Construction of mutant enzymes whose activity is regulated by phosphorylation and dephosphorylation. Friesen JA, Rodwell VW. Biochemistry; 1997 Feb 25; 36(8):2173-7. PubMed ID: 9047317 [Abstract] [Full Text] [Related]
4. Structural determinants of nucleotide coenzyme specificity in the distinctive dinucleotide binding fold of HMG-CoA reductase from Pseudomonas mevalonii. Friesen JA, Lawrence CM, Stauffacher CV, Rodwell VW. Biochemistry; 1996 Sep 17; 35(37):11945-50. PubMed ID: 8810898 [Abstract] [Full Text] [Related]
5. Investigation of the conserved lysines of Syrian hamster 3-hydroxy-3-methylglutaryl coenzyme A reductase. Bochar DA, Stauffacher CV, Rodwell VW. Biochemistry; 1999 Nov 30; 38(48):15848-52. PubMed ID: 10625449 [Abstract] [Full Text] [Related]
6. Identification of elements critical for phosphorylation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by adenosine monophosphate-activated protein kinase: protein engineering of the naturally nonphosphorylatable 3-hydroxy-3-methylglutaryl coenzyme A reductase from Pseudomonas mevalonii. Friesen JA, Rodwell VW. Biochemistry; 1997 Feb 04; 36(5):1157-62. PubMed ID: 9033407 [Abstract] [Full Text] [Related]
7. Identification of the catalytically important histidine of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Darnay BG, Wang Y, Rodwell VW. J Biol Chem; 1992 Jul 25; 267(21):15064-70. PubMed ID: 1634543 [Abstract] [Full Text] [Related]
8. Characterization of an HMG-CoA reductase from Listeria monocytogenes that exhibits dual coenzyme specificity. Theivagt AE, Amanti EN, Beresford NJ, Tabernero L, Friesen JA. Biochemistry; 2006 Dec 05; 45(48):14397-406. PubMed ID: 17128979 [Abstract] [Full Text] [Related]
9. Evaluation of 3-hydroxy-3-methylglutaryl-coenzyme A lyase arginine-41 as a catalytic residue: use of acetyldithio-coenzyme A to monitor product enolization. Tuinstra RL, Wang CZ, Mitchell GA, Miziorko HM. Biochemistry; 2004 May 11; 43(18):5287-95. PubMed ID: 15122894 [Abstract] [Full Text] [Related]
10. Identification of catalytic cysteine, histidine, and lysine residues in Escherichia coli homoserine transsuccinylase. Ziegler K, Noble SM, Mutumanje E, Bishop B, Huddler DP, Born TL. Biochemistry; 2007 Mar 13; 46(10):2674-83. PubMed ID: 17302437 [Abstract] [Full Text] [Related]
11. Site-directed mutagenesis of active site residues of phosphite dehydrogenase. Woodyer R, Wheatley JL, Relyea HA, Rimkus S, van der Donk WA. Biochemistry; 2005 Mar 29; 44(12):4765-74. PubMed ID: 15779903 [Abstract] [Full Text] [Related]
12. Characterization of human UDP-glucose dehydrogenase reveals critical catalytic roles for lysine 220 and aspartate 280. Easley KE, Sommer BJ, Boanca G, Barycki JJ, Simpson MA. Biochemistry; 2007 Jan 16; 46(2):369-78. PubMed ID: 17209547 [Abstract] [Full Text] [Related]
13. Identification of the principal catalytically important acidic residue of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Wang Y, Darnay BG, Rodwell VW. J Biol Chem; 1990 Dec 15; 265(35):21634-41. PubMed ID: 2123872 [Abstract] [Full Text] [Related]
14. Dual roles of Lys(57) at the dimer interface of human mitochondrial NAD(P)+-dependent malic enzyme. Hsieh JY, Liu JH, Fang YW, Hung HC. Biochem J; 2009 May 13; 420(2):201-9. PubMed ID: 19236308 [Abstract] [Full Text] [Related]
16. Inhibition of the class II HMG-CoA reductase of Pseudomonas mevalonii. Hedl M, Rodwell VW. Protein Sci; 2004 Jun 13; 13(6):1693-7. PubMed ID: 15152097 [Abstract] [Full Text] [Related]
17. Engineering of Sulfolobus solfataricus HMG-CoA reductase to a form whose activity is regulated by phosphorylation and dephosphorylation. Kim DY, Stauffacher CV, Rodwell VW. Biochemistry; 2000 Mar 07; 39(9):2269-75. PubMed ID: 10694393 [Abstract] [Full Text] [Related]
18. Structural replacement of active site monovalent cations by the epsilon-amino group of lysine in the ATPase fragment of bovine Hsc70. Wilbanks SM, McKay DB. Biochemistry; 1998 May 19; 37(20):7456-62. PubMed ID: 9585559 [Abstract] [Full Text] [Related]
19. Site-directed mutagenesis of the putative distal helix of peroxygenase cytochrome P450. Matsunaga I, Ueda A, Sumimoto T, Ichihara K, Ayata M, Ogura H. Arch Biochem Biophys; 2001 Oct 01; 394(1):45-53. PubMed ID: 11566026 [Abstract] [Full Text] [Related]
20. Essentiality, expression, and characterization of the class II 3-hydroxy-3-methylglutaryl coenzyme A reductase of Staphylococcus aureus. Wilding EI, Kim DY, Bryant AP, Gwynn MN, Lunsford RD, McDevitt D, Myers JE, Rosenberg M, Sylvester D, Stauffacher CV, Rodwell VW. J Bacteriol; 2000 Sep 01; 182(18):5147-52. PubMed ID: 10960099 [Abstract] [Full Text] [Related] Page: [Next] [New Search]