These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
240 related items for PubMed ID: 10419941
1. Genomic relatedness of Chlamydia isolates determined by amplified fragment length polymorphism analysis. Meijer A, Morré SA, van den Brule AJ, Savelkoul PH, Ossewaarde JM. J Bacteriol; 1999 Aug; 181(15):4469-75. PubMed ID: 10419941 [Abstract] [Full Text] [Related]
2. Evolutionary relationships among members of the genus Chlamydia based on 16S ribosomal DNA analysis. Pettersson B, Andersson A, Leitner T, Olsvik O, Uhlén M, Storey C, Black CM. J Bacteriol; 1997 Jul; 179(13):4195-205. PubMed ID: 9209033 [Abstract] [Full Text] [Related]
3. Touchdown enzyme time release-PCR for detection and identification of Chlamydia trachomatis, C. pneumoniae, and C. psittaci using the 16S and 16S-23S spacer rRNA genes. Madico G, Quinn TC, Boman J, Gaydos CA. J Clin Microbiol; 2000 Mar; 38(3):1085-93. PubMed ID: 10699002 [Abstract] [Full Text] [Related]
4. Detection and differentiation of Chlamydia trachomatis, Chlamydia psittaci, and Chlamydia pneumoniae by DNA amplification. Holland SM, Gaydos CA, Quinn TC. J Infect Dis; 1990 Oct; 162(4):984-7. PubMed ID: 2401796 [Abstract] [Full Text] [Related]
5. PCR detection and differentiation of Chlamydia pneumoniae, Chlamydia psittaci and Chlamydia trachomatis. Rasmussen SJ, Douglas FP, Timms P. Mol Cell Probes; 1992 Oct; 6(5):389-94. PubMed ID: 1361961 [Abstract] [Full Text] [Related]
6. Phylogenetic relationship of Chlamydia pneumoniae to Chlamydia psittaci and Chlamydia trachomatis as determined by analysis of 16S ribosomal DNA sequences. Gaydos CA, Palmer L, Quinn TC, Falkow S, Eiden JJ. Int J Syst Bacteriol; 1993 Jul; 43(3):610-2. PubMed ID: 8347519 [Abstract] [Full Text] [Related]
7. Species identification of Chlamydia isolates by analyzing restriction fragment length polymorphism of the 16S-23S rRNA spacer region. Meijer A, Kwakkel GJ, de Vries A, Schouls LM, Ossewaarde JM. J Clin Microbiol; 1997 May; 35(5):1179-83. PubMed ID: 9114403 [Abstract] [Full Text] [Related]
8. Chlamydial disease--more than just abortion. Jones GE. Vet J; 1997 May; 153(3):249-51. PubMed ID: 9232115 [No Abstract] [Full Text] [Related]
9. Mixed infections with porcine Chlamydia trachomatis/pecorum and infections with ruminant Chlamydia psittaci serovar 1 associated with abortions in swine. Schiller I, Koesters R, Weilenmann R, Thoma R, Kaltenboeck B, Heitz P, Pospischil A. Vet Microbiol; 1997 Nov; 58(2-4):251-60. PubMed ID: 9453135 [Abstract] [Full Text] [Related]
10. Structures of and allelic diversity and relationships among the major outer membrane protein (ompA) genes of the four chlamydial species. Kaltenboeck B, Kousoulas KG, Storz J. J Bacteriol; 1993 Jan; 175(2):487-502. PubMed ID: 8419295 [Abstract] [Full Text] [Related]
11. Distinguishing Chlamydia species by restriction analysis of the major outer membrane protein gene. Black CM, Tharpe JA, Russell H. Mol Cell Probes; 1992 Oct; 6(5):395-400. PubMed ID: 1361962 [Abstract] [Full Text] [Related]
12. Multi locus sequence typing of Chlamydiales: clonal groupings within the obligate intracellular bacteria Chlamydia trachomatis. Pannekoek Y, Morelli G, Kusecek B, Morré SA, Ossewaarde JM, Langerak AA, van der Ende A. BMC Microbiol; 2008 Feb 28; 8():42. PubMed ID: 18307777 [Abstract] [Full Text] [Related]
13. Polymerase chain reaction (PCR) detection of porcine Chlamydia trachomatis and ruminant Chlamydia psittaci serovar 1 DNA in formalin-fixed intestinal specimens from swine. Schiller I, Koesters R, Weilenmann R, Kaltenboeck B, Pospischil A. Zentralbl Veterinarmed B; 1997 May 28; 44(3):185-91. PubMed ID: 9197211 [Abstract] [Full Text] [Related]
14. Restriction fragment length polymorphisms of rRNA as genetic markers to differentiate Chlamydia spp. Fukushi H, Hirai K. Int J Syst Bacteriol; 1993 Jul 28; 43(3):613-7. PubMed ID: 8102247 [Abstract] [Full Text] [Related]
15. Genetic diversity of avian and mammalian Chlamydia psittaci strains and relation to host origin. Fukushi H, Hirai K. J Bacteriol; 1989 May 28; 171(5):2850-5. PubMed ID: 2565333 [Abstract] [Full Text] [Related]
16. Molecular typing of Chlamydia trachomatis by random amplification of polymorphic DNA. Scieux C, Grimont F, Regnault B, Bianchi A, Kowalski S, Grimont PA. Res Microbiol; 1993 Jun 28; 144(5):395-404. PubMed ID: 7902599 [Abstract] [Full Text] [Related]
17. Analysis of genetic heterogeneity in Chlamydia trachomatis clinical isolates of serovars D, E, and F by amplified fragment length polymorphism. Morré SA, Ossewaarde JM, Savelkoul PH, Stoof J, Meijer CJ, van den Brule AJ. J Clin Microbiol; 2000 Sep 28; 38(9):3463-6. PubMed ID: 10970405 [Abstract] [Full Text] [Related]
18. Phylogenetic analysis of the genus Chlamydia based on 16S rRNA gene sequences. Pudjiatmoko, Fukushi H, Ochiai Y, Yamaguchi T, Hirai K. Int J Syst Bacteriol; 1997 Apr 28; 47(2):425-31. PubMed ID: 9103632 [Abstract] [Full Text] [Related]
19. Recombination in the ompA gene but not the omcB gene of Chlamydia contributes to serovar-specific differences in tissue tropism, immune surveillance, and persistence of the organism. Millman KL, Tavaré S, Dean D. J Bacteriol; 2001 Oct 28; 183(20):5997-6008. PubMed ID: 11567000 [Abstract] [Full Text] [Related]
20. The ribosomal intergenic spacer and domain I of the 23S rRNA gene are phylogenetic markers for Chlamydia spp. Everett KD, Andersen AA. Int J Syst Bacteriol; 1997 Apr 28; 47(2):461-73. PubMed ID: 9103637 [Abstract] [Full Text] [Related] Page: [Next] [New Search]