These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


100 related items for PubMed ID: 10428485

  • 1. N-terminally truncated Vav induces the formation of depolymerization-resistant actin filaments in NIH 3T3 cells.
    Kranewitter WJ, Gimona M.
    FEBS Lett; 1999 Jul 16; 455(1-2):123-9. PubMed ID: 10428485
    [Abstract] [Full Text] [Related]

  • 2. Critical role of the pleckstrin homology and cysteine-rich domains in Vav signaling and transforming activity.
    Palmby TR, Abe K, Der CJ.
    J Biol Chem; 2002 Oct 18; 277(42):39350-9. PubMed ID: 12177050
    [Abstract] [Full Text] [Related]

  • 3. GEF at work: Vav in protruding filopodia.
    Kranewitter WJ, Danninger C, Gimona M.
    Cell Motil Cytoskeleton; 2001 Jul 18; 49(3):154-60. PubMed ID: 11668584
    [Abstract] [Full Text] [Related]

  • 4. Does Vav bind to F-actin through a CH domain?
    Castresana J, Saraste M.
    FEBS Lett; 1995 Oct 30; 374(2):149-51. PubMed ID: 7589522
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins.
    Movilla N, Bustelo XR.
    Mol Cell Biol; 1999 Nov 30; 19(11):7870-85. PubMed ID: 10523675
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Involvement of NH(2)-terminal sequences in the negative regulation of Vav signaling and transforming activity.
    Abe K, Whitehead IP, O'Bryan JP, Der CJ.
    J Biol Chem; 1999 Oct 22; 274(43):30410-8. PubMed ID: 10521418
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction.
    Holsinger LJ, Graef IA, Swat W, Chi T, Bautista DM, Davidson L, Lewis RS, Alt FW, Crabtree GR.
    Curr Biol; 1998 May 07; 8(10):563-72. PubMed ID: 9601640
    [Abstract] [Full Text] [Related]

  • 14. Genomic organization and regulation of the vav proto-oncogene.
    Denkinger DJ, Borges CR, Butler CL, Cushman AM, Kawahara RS.
    Biochim Biophys Acta; 2000 Apr 25; 1491(1-3):253-62. PubMed ID: 10760587
    [Abstract] [Full Text] [Related]

  • 15. Single point mutations in the SH2 domain impair the transforming potential of vav and fail to activate proto-vav.
    Katzav S.
    Oncogene; 1993 Jul 25; 8(7):1757-63. PubMed ID: 8510922
    [Abstract] [Full Text] [Related]

  • 16. Live dynamics of GFP-calponin: isoform-specific modulation of the actin cytoskeleton and autoregulation by C-terminal sequences.
    Danninger C, Gimona M.
    J Cell Sci; 2000 Nov 25; 113 Pt 21():3725-36. PubMed ID: 11034901
    [Abstract] [Full Text] [Related]

  • 17. Loss of the amino-terminal helix-loop-helix domain of the vav proto-oncogene activates its transforming potential.
    Katzav S, Cleveland JL, Heslop HE, Pulido D.
    Mol Cell Biol; 1991 Apr 25; 11(4):1912-20. PubMed ID: 2005887
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. The single CH domain of calponin is neither sufficient nor necessary for F-actin binding.
    Gimona M, Mital R.
    J Cell Sci; 1998 Jul 25; 111 ( Pt 13)():1813-21. PubMed ID: 9625744
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.