These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


395 related items for PubMed ID: 10436010

  • 1. Protein kinase activity and identification of a toxic effector domain of the target of rapamycin TOR proteins in yeast.
    Alarcon CM, Heitman J, Cardenas ME.
    Mol Biol Cell; 1999 Aug; 10(8):2531-46. PubMed ID: 10436010
    [Abstract] [Full Text] [Related]

  • 2. Mammalian RAFT1 kinase domain provides rapamycin-sensitive TOR function in yeast.
    Alarcon CM, Cardenas ME, Heitman J.
    Genes Dev; 1996 Feb 01; 10(3):279-88. PubMed ID: 8595879
    [Abstract] [Full Text] [Related]

  • 3. TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin.
    Zheng XF, Florentino D, Chen J, Crabtree GR, Schreiber SL.
    Cell; 1995 Jul 14; 82(1):121-30. PubMed ID: 7606777
    [Abstract] [Full Text] [Related]

  • 4. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin.
    Lorenz MC, Heitman J.
    J Biol Chem; 1995 Nov 17; 270(46):27531-7. PubMed ID: 7499212
    [Abstract] [Full Text] [Related]

  • 5. The FKBP12-rapamycin-binding domain is required for FKBP12-rapamycin-associated protein kinase activity and G1 progression.
    Vilella-Bach M, Nuzzi P, Fang Y, Chen J.
    J Biol Chem; 1999 Feb 12; 274(7):4266-72. PubMed ID: 9933627
    [Abstract] [Full Text] [Related]

  • 6. Missense mutations at the FKBP12-rapamycin-binding site of TOR1.
    Freeman K, Livi GP.
    Gene; 1996 Jun 12; 172(1):143-7. PubMed ID: 8654975
    [Abstract] [Full Text] [Related]

  • 7. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells.
    Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, Abraham RT.
    J Biol Chem; 1995 Jan 13; 270(2):815-22. PubMed ID: 7822316
    [Abstract] [Full Text] [Related]

  • 8. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast.
    Helliwell SB, Wagner P, Kunz J, Deuter-Reinhard M, Henriquez R, Hall MN.
    Mol Biol Cell; 1994 Jan 13; 5(1):105-18. PubMed ID: 8186460
    [Abstract] [Full Text] [Related]

  • 9. Interaction between FKBP12-rapamycin and TOR involves a conserved serine residue.
    Stan R, McLaughlin MM, Cafferkey R, Johnson RK, Rosenberg M, Livi GP.
    J Biol Chem; 1994 Dec 23; 269(51):32027-30. PubMed ID: 7528205
    [Abstract] [Full Text] [Related]

  • 10. The fission yeast TOR homolog, tor1+, is required for the response to starvation and other stresses via a conserved serine.
    Weisman R, Choder M.
    J Biol Chem; 2001 Mar 09; 276(10):7027-32. PubMed ID: 11096119
    [Abstract] [Full Text] [Related]

  • 11. FAP1, a homologue of human transcription factor NF-X1, competes with rapamycin for binding to FKBP12 in yeast.
    Kunz J, Loeschmann A, Deuter-Reinhard M, Hall MN.
    Mol Microbiol; 2000 Sep 09; 37(6):1480-93. PubMed ID: 10998178
    [Abstract] [Full Text] [Related]

  • 12. The rapamycin and FKBP12 target (RAFT) displays phosphatidylinositol 4-kinase activity.
    Sabatini DM, Pierchala BA, Barrow RK, Schell MJ, Snyder SH.
    J Biol Chem; 1995 Sep 08; 270(36):20875-8. PubMed ID: 7673106
    [Abstract] [Full Text] [Related]

  • 13. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs.
    Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH.
    Cell; 1994 Jul 15; 78(1):35-43. PubMed ID: 7518356
    [Abstract] [Full Text] [Related]

  • 14. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control.
    Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN.
    Mol Cell; 2002 Sep 15; 10(3):457-68. PubMed ID: 12408816
    [Abstract] [Full Text] [Related]

  • 15. A mammalian protein targeted by G1-arresting rapamycin-receptor complex.
    Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL.
    Nature; 1994 Jun 30; 369(6483):756-8. PubMed ID: 8008069
    [Abstract] [Full Text] [Related]

  • 16. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002.
    Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC, Abraham RT.
    EMBO J; 1996 Oct 01; 15(19):5256-67. PubMed ID: 8895571
    [Abstract] [Full Text] [Related]

  • 17. Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity.
    Cafferkey R, Young PR, McLaughlin MM, Bergsma DJ, Koltin Y, Sathe GM, Faucette L, Eng WK, Johnson RK, Livi GP.
    Mol Cell Biol; 1993 Oct 01; 13(10):6012-23. PubMed ID: 8413204
    [Abstract] [Full Text] [Related]

  • 18. Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans.
    Cruz MC, Cavallo LM, Görlach JM, Cox G, Perfect JR, Cardenas ME, Heitman J.
    Mol Cell Biol; 1999 Jun 01; 19(6):4101-12. PubMed ID: 10330150
    [Abstract] [Full Text] [Related]

  • 19. TOR controls translation initiation and early G1 progression in yeast.
    Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN.
    Mol Biol Cell; 1996 Jan 01; 7(1):25-42. PubMed ID: 8741837
    [Abstract] [Full Text] [Related]

  • 20. Rapamycin resistance in ataxia-telangiectasia.
    Beamish H, Williams R, Chen P, Khanna KK, Hobson K, Watters D, Shiloh Y, Lavin M.
    Oncogene; 1996 Sep 05; 13(5):963-70. PubMed ID: 8806686
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.