These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


207 related items for PubMed ID: 10438743

  • 1. Transport of D-xylose in Lactobacillus pentosus, Lactobacillus casei, and Lactobacillus plantarum: evidence for a mechanism of facilitated diffusion via the phosphoenolpyruvate:mannose phosphotransferase system.
    Chaillou S, Pouwels PH, Postma PW.
    J Bacteriol; 1999 Aug; 181(16):4768-73. PubMed ID: 10438743
    [Abstract] [Full Text] [Related]

  • 2. Contribution of the phosphoenolpyruvate:mannose phosphotransferase system to carbon catabolite repression in Lactobacillus pentosus.
    Chaillou S, Postma PW, Pouwels PH.
    Microbiology (Reading); 2001 Mar; 147(Pt 3):671-679. PubMed ID: 11238974
    [Abstract] [Full Text] [Related]

  • 3. Utilization of D-ribitol by Lactobacillus casei BL23 requires a mannose-type phosphotransferase system and three catabolic enzymes.
    Bourand A, Yebra MJ, Boël G, Mazé A, Deutscher J.
    J Bacteriol; 2013 Jun; 195(11):2652-61. PubMed ID: 23564164
    [Abstract] [Full Text] [Related]

  • 4. Glucose transport by the phosphoenolpyruvate:mannose phosphotransferase system in Lactobacillus casei ATCC 393 and its role in carbon catabolite repression.
    Veyrat A, Monedero V, Pérez-Martínez G.
    Microbiology (Reading); 1994 May; 140 ( Pt 5)():1141-9. PubMed ID: 8025679
    [Abstract] [Full Text] [Related]

  • 5. Molecular analysis of the glucose-specific phosphoenolpyruvate : sugar phosphotransferase system from Lactobacillus casei and its links with the control of sugar metabolism.
    Yebra MJ, Monedero V, Zúñiga M, Deutscher J, Pérez-Martínez G.
    Microbiology (Reading); 2006 Jan; 152(Pt 1):95-104. PubMed ID: 16385119
    [Abstract] [Full Text] [Related]

  • 6. Genetics of L-sorbose transport and metabolism in Lactobacillus casei.
    Yebra MJ, Veyrat A, Santos MA, Pérez-Martínez G.
    J Bacteriol; 2000 Jan; 182(1):155-63. PubMed ID: 10613875
    [Abstract] [Full Text] [Related]

  • 7. An esterase gene from Lactobacillus casei cotranscribed with genes encoding a phosphoenolpyruvate:sugar phosphotransferase system and regulated by a LevR-like activator and sigma54 factor.
    Yebra MJ, Viana R, Monedero V, Deutscher J, Pérez-Martínez G.
    J Mol Microbiol Biotechnol; 2004 Jan; 8(2):117-28. PubMed ID: 15925903
    [Abstract] [Full Text] [Related]

  • 8. Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and beta-D-phosphogalactoside galactohydrolase activities in Lactobacillus casei.
    Chassy BM, Thompson J.
    J Bacteriol; 1983 Jun; 154(3):1195-203. PubMed ID: 6406426
    [Abstract] [Full Text] [Related]

  • 9. Regulation and characterization of the galactose-phosphoenolpyruvate-dependent phosphotransferase system in Lactobacillus casei.
    Chassy BM, Thompson J.
    J Bacteriol; 1983 Jun; 154(3):1204-14. PubMed ID: 6406427
    [Abstract] [Full Text] [Related]

  • 10. Lactobacillus casei 64H contains a phosphoenolpyruvate-dependent phosphotransferase system for uptake of galactose, as confirmed by analysis of ptsH and different gal mutants.
    Bettenbrock K, Siebers U, Ehrenreich P, Alpert CA.
    J Bacteriol; 1999 Jan; 181(1):225-30. PubMed ID: 9864334
    [Abstract] [Full Text] [Related]

  • 11. Molecular cloning and functional expression in lactobacillus plantarum 80 of xylT, encoding the D-xylose-H+ symporter of Lactobacillus brevis.
    Chaillou S, Bor YC, Batt CA, Postma PW, Pouwels PH.
    Appl Environ Microbiol; 1998 Dec; 64(12):4720-8. PubMed ID: 9835554
    [Abstract] [Full Text] [Related]

  • 12. Functional expression in Lactobacillus plantarum of xylP encoding the isoprimeverose transporter of Lactobacillus pentosus.
    Chaillou S, Postma PW, Pouwels PH.
    J Bacteriol; 1998 Aug; 180(15):4011-4. PubMed ID: 9683504
    [Abstract] [Full Text] [Related]

  • 13. Enzyme I and HPr from Lactobacillus casei: their role in sugar transport, carbon catabolite repression and inducer exclusion.
    Viana R, Monedero V, Dossonnet V, Vadeboncoeur C, Pérez-Martínez G, Deutscher J.
    Mol Microbiol; 2000 May; 36(3):570-84. PubMed ID: 10844647
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.