These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


210 related items for PubMed ID: 10444433

  • 1. Insulin regulation of glucose transport and phosphorylation in skeletal muscle assessed by PET.
    Kelley DE, Williams KV, Price JC.
    Am J Physiol; 1999 Aug; 277(2):E361-9. PubMed ID: 10444433
    [Abstract] [Full Text] [Related]

  • 2. Interactions of impaired glucose transport and phosphorylation in skeletal muscle insulin resistance: a dose-response assessment using positron emission tomography.
    Williams KV, Price JC, Kelley DE.
    Diabetes; 2001 Sep; 50(9):2069-79. PubMed ID: 11522673
    [Abstract] [Full Text] [Related]

  • 3. Interactions between delivery, transport, and phosphorylation of glucose in governing uptake into human skeletal muscle.
    Bertoldo A, Pencek RR, Azuma K, Price JC, Kelley C, Cobelli C, Kelley DE.
    Diabetes; 2006 Nov; 55(11):3028-37. PubMed ID: 17065339
    [Abstract] [Full Text] [Related]

  • 4. Determination of the lumped constant for [18F] fluorodeoxyglucose in human skeletal muscle.
    Kelley DE, Williams KV, Price JC, Goodpaster B.
    J Nucl Med; 1999 Nov; 40(11):1798-804. PubMed ID: 10565773
    [Abstract] [Full Text] [Related]

  • 5. Glucose transport and phosphorylation in skeletal muscle in obesity: insight from a muscle-specific positron emission tomography model.
    Williams KV, Bertoldo A, Mattioni B, Price JC, Cobelli C, Kelley DE.
    J Clin Endocrinol Metab; 2003 Mar; 88(3):1271-9. PubMed ID: 12629118
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Quantitative assessment of glucose transport in human skeletal muscle: dynamic positron emission tomography imaging of [O-methyl-11C]3-O-methyl-D-glucose.
    Bertoldo A, Price J, Mathis C, Mason S, Holt D, Kelley C, Cobelli C, Kelley DE.
    J Clin Endocrinol Metab; 2005 Mar; 90(3):1752-9. PubMed ID: 15613423
    [Abstract] [Full Text] [Related]

  • 10. Lumped constant for [(18)F]fluorodeoxyglucose in skeletal muscles of obese and nonobese humans.
    Peltoniemi P, Lönnroth P, Laine H, Oikonen V, Tolvanen T, Grönroos T, Strindberg L, Knuuti J, Nuutila P.
    Am J Physiol Endocrinol Metab; 2000 Nov; 279(5):E1122-30. PubMed ID: 11052968
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Human adipose tissue glucose uptake determined using [(18)F]-fluoro-deoxy-glucose ([(18)F]FDG) and PET in combination with microdialysis.
    Virtanen KA, Peltoniemi P, Marjamäki P, Asola M, Strindberg L, Parkkola R, Huupponen R, Knuuti J, Lönnroth P, Nuutila P.
    Diabetologia; 2001 Dec; 44(12):2171-9. PubMed ID: 11793018
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Interactions among glucose delivery, transport, and phosphorylation that underlie skeletal muscle insulin resistance in obesity and type 2 Diabetes: studies with dynamic PET imaging.
    Goodpaster BH, Bertoldo A, Ng JM, Azuma K, Pencek RR, Kelley C, Price JC, Cobelli C, Kelley DE.
    Diabetes; 2014 Mar; 63(3):1058-68. PubMed ID: 24222345
    [Abstract] [Full Text] [Related]

  • 15. Exercise restores skeletal muscle glucose delivery but not insulin-mediated glucose transport and phosphorylation in obese subjects.
    Slimani L, Oikonen V, Hällsten K, Savisto N, Knuuti J, Nuutila P, Iozzo P.
    J Clin Endocrinol Metab; 2006 Sep; 91(9):3394-403. PubMed ID: 16772346
    [Abstract] [Full Text] [Related]

  • 16. 2-[(18)F]fluoro-2-deoxy-D-glucose combined with microdialysis can be used for the comparison of tissue glucose metabolism in obese and lean rats.
    Virtanen KA, Haaparanta M, Grönroos T, Bergman J, Solin O, Rouru J, Nuutila P, Huupponen R.
    Diabetes Obes Metab; 2002 Jan; 4(1):60-8. PubMed ID: 11874444
    [Abstract] [Full Text] [Related]

  • 17. Assessment of insulin resistance in the skeletal muscle of mice using positron emission tomography/computed tomography imaging.
    Miyatake Y, Mishima Y, Tsutsumi R, Otani T, Suemasa N, Masumoto S, Kuroda M, Sakaue H.
    Biochem Biophys Res Commun; 2020 Jul 30; 528(3):499-505. PubMed ID: 32513534
    [Abstract] [Full Text] [Related]

  • 18. Role of blood flow in regulating insulin-stimulated glucose uptake in humans. Studies using bradykinin, [15O]water, and [18F]fluoro-deoxy-glucose and positron emission tomography.
    Nuutila P, Raitakari M, Laine H, Kirvelä O, Takala T, Utriainen T, Mäkimattila S, Pitkänen OP, Ruotsalainen U, Iida H, Knuuti J, Yki-Järvinen H.
    J Clin Invest; 1996 Apr 01; 97(7):1741-7. PubMed ID: 8601640
    [Abstract] [Full Text] [Related]

  • 19. Quantification, Variability, and Reproducibility of Basal Skeletal Muscle Glucose Uptake in Healthy Humans Using 18F-FDG PET/CT.
    Gheysens O, Postnov A, Deroose CM, Vandermeulen C, de Hoon J, Declercq R, Dennie J, Mixson L, De Lepeleire I, Van Laere K, Klimas M, Chakravarthy MV.
    J Nucl Med; 2015 Oct 01; 56(10):1520-6. PubMed ID: 26229142
    [Abstract] [Full Text] [Related]

  • 20. Simple quantification of skeletal muscle glucose utilization by static 18F-FDG PET.
    Yokoyama I, Inoue Y, Moritan T, Ohtomo K, Nagai R.
    J Nucl Med; 2003 Oct 01; 44(10):1592-8. PubMed ID: 14530472
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.