These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


179 related items for PubMed ID: 10447686

  • 21. EPR and redox characterization of iron-sulfur centers in nitrate reductases A and Z from Escherichia coli. Evidence for a high-potential and a low-potential class and their relevance in the electron-transfer mechanism.
    Guigliarelli B, Asso M, More C, Augier V, Blasco F, Pommier J, Giordano G, Bertrand P.
    Eur J Biochem; 1992 Jul 01; 207(1):61-8. PubMed ID: 1321049
    [Abstract] [Full Text] [Related]

  • 22. Purification and characterization of a benzylviologen-linked, tungsten-containing aldehyde oxidoreductase from Desulfovibrio gigas.
    Hensgens CM, Hagen WR, Hansen TA.
    J Bacteriol; 1995 Nov 01; 177(21):6195-200. PubMed ID: 7592385
    [Abstract] [Full Text] [Related]

  • 23. Reductive activation in periplasmic nitrate reductase involves chemical modifications of the Mo-cofactor beyond the first coordination sphere of the metal ion.
    Jacques JG, Fourmond V, Arnoux P, Sabaty M, Etienne E, Grosse S, Biaso F, Bertrand P, Pignol D, Léger C, Guigliarelli B, Burlat B.
    Biochim Biophys Acta; 2014 Feb 01; 1837(2):277-86. PubMed ID: 24212053
    [Abstract] [Full Text] [Related]

  • 24. Studies of the redox properties of CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase (E1) and CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase reductase (E3): two important enzymes involved in the biosynthesis of ascarylose.
    Burns KD, Pieper PA, Liu HW, Stankovich MT.
    Biochemistry; 1996 Jun 18; 35(24):7879-89. PubMed ID: 8672489
    [Abstract] [Full Text] [Related]

  • 25. Interactions between the molybdenum cofactor and iron-sulfur clusters of Escherichia coli dimethylsulfoxide reductase.
    Rothery RA, Trieber CA, Weiner JH.
    J Biol Chem; 1999 May 07; 274(19):13002-9. PubMed ID: 10224050
    [Abstract] [Full Text] [Related]

  • 26. Redox chemistry of tungsten and iron-sulfur prosthetic groups in Pyrococcus furiosus formaldehyde ferredoxin oxidoreductase.
    Bol E, Bevers LE, Hagedoorn PL, Hagen WR.
    J Biol Inorg Chem; 2006 Nov 07; 11(8):999-1006. PubMed ID: 16924554
    [Abstract] [Full Text] [Related]

  • 27. Identification of an unusual paramagnetic species and of three [2Fe-2S] clusters in the iron-only hydrogenase from the hyperthermophilic bacterium Thermotoga maritima.
    Smith ET, Adams MW.
    Biochim Biophys Acta; 1994 May 18; 1206(1):105-12. PubMed ID: 8186240
    [Abstract] [Full Text] [Related]

  • 28. The tungsten formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic for enzymes containing molybdopterin dinucleotide.
    Hochheimer A, Schmitz RA, Thauer RK, Hedderich R.
    Eur J Biochem; 1995 Dec 15; 234(3):910-20. PubMed ID: 8575452
    [Abstract] [Full Text] [Related]

  • 29. Investigation of the redox centres of periplasmic selenate reductase from Thauera selenatis by EPR spectroscopy.
    Dridge EJ, Watts CA, Jepson BJ, Line K, Santini JM, Richardson DJ, Butler CS.
    Biochem J; 2007 Nov 15; 408(1):19-28. PubMed ID: 17688424
    [Abstract] [Full Text] [Related]

  • 30. Nickel-[iron-sulfur]-selenium-containing hydrogenases from Desulfovibrio baculatus (DSM 1743). Redox centers and catalytic properties.
    Teixeira M, Fauque G, Moura I, Lespinat PA, Berlier Y, Prickril B, Peck HD, Xavier AV, Le Gall J, Moura JJ.
    Eur J Biochem; 1987 Aug 17; 167(1):47-58. PubMed ID: 3040402
    [Abstract] [Full Text] [Related]

  • 31. Kinetics and interactions of molybdenum and iron-sulfur centers in bacterial enzymes of the xanthine oxidase family: mechanistic implications.
    Canne C, Lowe DJ, Fetzner S, Adams B, Smith AT, Kappl R, Bray RC, Hüttermann J.
    Biochemistry; 1999 Oct 19; 38(42):14077-87. PubMed ID: 10529255
    [Abstract] [Full Text] [Related]

  • 32. Towards Structural-Functional Mimics of Acetylene Hydratase: Reversible Activation of Acetylene using a Biomimetic Tungsten Complex.
    Peschel LM, Belaj F, Mösch-Zanetti NC.
    Angew Chem Int Ed Engl; 2015 Oct 26; 54(44):13018-21. PubMed ID: 26480335
    [Abstract] [Full Text] [Related]

  • 33. EPR characterization of an archaeal succinate dehydrogenase in the membrane-bound state.
    Anemüller S, Hettmann T, Moll R, Teixeira M, Schäfer G.
    Eur J Biochem; 1995 Sep 01; 232(2):563-8. PubMed ID: 7556208
    [Abstract] [Full Text] [Related]

  • 34. Determination of the midpoint potential of the FAD and FMN flavin cofactors and of the 3Fe-4S cluster of glutamate synthase.
    Ravasio S, Curti B, Vanoni MA.
    Biochemistry; 2001 May 08; 40(18):5533-41. PubMed ID: 11331018
    [Abstract] [Full Text] [Related]

  • 35. Characterization of a tungsten-iron-sulfur protein exhibiting novel spectroscopic and redox properties from the hyperthermophilic archaebacterium Pyrococcus furiosus.
    Mukund S, Adams MW.
    J Biol Chem; 1990 Jul 15; 265(20):11508-16. PubMed ID: 2164004
    [Abstract] [Full Text] [Related]

  • 36. Purification and characterization of a tungsten-containing formate dehydrogenase from Desulfovibrio gigas.
    Almendra MJ, Brondino CD, Gavel O, Pereira AS, Tavares P, Bursakov S, Duarte R, Caldeira J, Moura JJ, Moura I.
    Biochemistry; 1999 Dec 07; 38(49):16366-72. PubMed ID: 10587462
    [Abstract] [Full Text] [Related]

  • 37. Characterisation of the pterin molybdenum cofactor in dimethylsulfoxide reductase of Rhodobacter capsulatus.
    Solomon PS, Lane I, Hanson GR, McEwan AG.
    Eur J Biochem; 1997 May 15; 246(1):200-3. PubMed ID: 9210484
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.