These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
250 related items for PubMed ID: 10450088
21. Structural analysis of lead fullerene-based inhibitor bound to human immunodeficiency virus type 1 protease in solution from molecular dynamics simulations. Lee VS, Nimmanpipug P, Aruksakunwong O, Promsri S, Sompornpisut P, Hannongbua S. J Mol Graph Model; 2007 Sep; 26(2):558-70. PubMed ID: 17468026 [Abstract] [Full Text] [Related]
22. Inhibitor binding at the protein interface in crystals of a HIV-1 protease complex. Brynda J, Rezácová P, Fábry M, Horejsí M, Stouracová R, Soucek M, Hradílek M, Konvalinka J, Sedlácek J. Acta Crystallogr D Biol Crystallogr; 2004 Nov; 60(Pt 11):1943-8. PubMed ID: 15502300 [Abstract] [Full Text] [Related]
23. Structure-based QSAR analysis of a set of 4-hydroxy-5,6-dihydropyrones as inhibitors of HIV-1 protease: an application of the receptor-dependent (RD) 4D-QSAR formalism. Santos-Filho OA, Hopfinger AJ. J Chem Inf Model; 2006 Nov; 46(1):345-54. PubMed ID: 16426069 [Abstract] [Full Text] [Related]
24. MCSS functionality maps for a flexible protein. Stultz CM, Karplus M. Proteins; 1999 Dec 01; 37(4):512-29. PubMed ID: 10651268 [Abstract] [Full Text] [Related]
25. Structure, dynamics and solvation of HIV-1 protease/saquinavir complex in aqueous solution and their contributions to drug resistance: molecular dynamic simulations. Wittayanarakul K, Aruksakunwong O, Sompornpisut P, Sanghiran-Lee V, Parasuk V, Pinitglang S, Hannongbua S. J Chem Inf Model; 2005 Dec 01; 45(2):300-8. PubMed ID: 15807491 [Abstract] [Full Text] [Related]
26. The effect of inhibitor binding on the structural stability and cooperativity of the HIV-1 protease. Todd MJ, Freire E. Proteins; 1999 Aug 01; 36(2):147-56. PubMed ID: 10398363 [Abstract] [Full Text] [Related]
27. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function. Taylor RD, Jewsbury PJ, Essex JW. J Comput Chem; 2003 Oct 01; 24(13):1637-56. PubMed ID: 12926007 [Abstract] [Full Text] [Related]
28. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance. Muzammil S, Ross P, Freire E. Biochemistry; 2003 Jan 28; 42(3):631-8. PubMed ID: 12534275 [Abstract] [Full Text] [Related]
29. Comparative binding energy analysis of HIV-1 protease inhibitors: incorporation of solvent effects and validation as a powerful tool in receptor-based drug design. Pérez C, Pastor M, Ortiz AR, Gago F. J Med Chem; 1998 Mar 12; 41(6):836-52. PubMed ID: 9526559 [Abstract] [Full Text] [Related]
30. Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations. Verkhivker GM. Pac Symp Biocomput; 1996 Mar 12; ():638-52. PubMed ID: 9390264 [Abstract] [Full Text] [Related]
31. Molecular dynamics study of the connection between flap closing and binding of fullerene-based inhibitors of the HIV-1 protease. Zhu Z, Schuster DI, Tuckerman ME. Biochemistry; 2003 Feb 11; 42(5):1326-33. PubMed ID: 12564936 [Abstract] [Full Text] [Related]
32. Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors. Wittayanarakul K, Hannongbua S, Feig M. J Comput Chem; 2008 Apr 15; 29(5):673-85. PubMed ID: 17849388 [Abstract] [Full Text] [Related]
33. Structure-based ligand design for flexible proteins: application of new F-DycoBlock. Zhu J, Fan H, Liu H, Shi Y. J Comput Aided Mol Des; 2001 Nov 15; 15(11):979-96. PubMed ID: 11989626 [Abstract] [Full Text] [Related]
34. Design, synthesis, evaluation, and crystallographic-based structural studies of HIV-1 protease inhibitors with reduced response to the V82A mutation. Clemente JC, Robbins A, Graña P, Paleo MR, Correa JF, Villaverde MC, Sardina FJ, Govindasamy L, Agbandje-McKenna M, McKenna R, Dunn BM, Sussman F. J Med Chem; 2008 Feb 28; 51(4):852-60. PubMed ID: 18215016 [Abstract] [Full Text] [Related]
35. Molecular basis of resistance to HIV-1 protease inhibition: a plausible hypothesis. Luque I, Todd MJ, Gómez J, Semo N, Freire E. Biochemistry; 1998 Apr 28; 37(17):5791-7. PubMed ID: 9558312 [Abstract] [Full Text] [Related]
36. A hybrid method of molecular dynamics and harmonic dynamics for docking of flexible ligand to flexible receptor. Tatsumi R, Fukunishi Y, Nakamura H. J Comput Chem; 2004 Dec 28; 25(16):1995-2005. PubMed ID: 15473011 [Abstract] [Full Text] [Related]
37. Improving binding mode predictions by docking into protein-specifically adapted potential fields. Radestock S, Böhm M, Gohlke H. J Med Chem; 2005 Aug 25; 48(17):5466-79. PubMed ID: 16107145 [Abstract] [Full Text] [Related]
38. Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases. Stoica I, Sadiq SK, Coveney PV. J Am Chem Soc; 2008 Feb 27; 130(8):2639-48. PubMed ID: 18225901 [Abstract] [Full Text] [Related]
39. E-novo: an automated workflow for efficient structure-based lead optimization. Pearce BC, Langley DR, Kang J, Huang H, Kulkarni A. J Chem Inf Model; 2009 Jul 27; 49(7):1797-809. PubMed ID: 19552372 [Abstract] [Full Text] [Related]