These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
250 related items for PubMed ID: 10450088
61. Active site binding modes of curcumin in HIV-1 protease and integrase. Vajragupta O, Boonchoong P, Morris GM, Olson AJ. Bioorg Med Chem Lett; 2005 Jul 15; 15(14):3364-8. PubMed ID: 15950462 [Abstract] [Full Text] [Related]
62. HIV-1 protease folding and the design of drugs which do not create resistance. Broglia R, Levy Y, Tiana G. Curr Opin Struct Biol; 2008 Feb 15; 18(1):60-6. PubMed ID: 18160276 [Abstract] [Full Text] [Related]
63. Conformational analysis of TMC114, a novel HIV-1 protease inhibitor. Nivesanond K, Peeters A, Lamoen D, Van Alsenoy C. J Chem Inf Model; 2008 Jan 15; 48(1):99-108. PubMed ID: 18173253 [Abstract] [Full Text] [Related]
64. Drug design: new inhibitors for HIV-1 protease based on Nelfinavir as lead. Perez MA, Fernandes PA, Ramos MJ. J Mol Graph Model; 2007 Oct 15; 26(3):634-42. PubMed ID: 17459746 [Abstract] [Full Text] [Related]
65. Targeting dynamic pockets of HIV-1 protease by structure-based computational screening for allosteric inhibitors. Kunze J, Todoroff N, Schneider P, Rodrigues T, Geppert T, Reisen F, Schreuder H, Saas J, Hessler G, Baringhaus KH, Schneider G. J Chem Inf Model; 2014 Mar 24; 54(3):987-91. PubMed ID: 24528206 [Abstract] [Full Text] [Related]
66. Small-sized human immunodeficiency virus type-1 protease inhibitors containing allophenylnorstatine to explore the S2' pocket. Hidaka K, Kimura T, Abdel-Rahman HM, Nguyen JT, McDaniel KF, Kohlbrenner WE, Molla A, Adachi M, Tamada T, Kuroki R, Katsuki N, Tanaka Y, Matsumoto H, Wang J, Hayashi Y, Kempf DJ, Kiso Y. J Med Chem; 2009 Dec 10; 52(23):7604-17. PubMed ID: 19954246 [Abstract] [Full Text] [Related]
67. Classification of water molecules in protein binding sites. Barillari C, Taylor J, Viner R, Essex JW. J Am Chem Soc; 2007 Mar 07; 129(9):2577-87. PubMed ID: 17288418 [Abstract] [Full Text] [Related]
68. Rapid screening for HIV-1 protease inhibitor leads through X-ray diffraction. Pillai B, Kannan KK, Bhat SV, Hosur MV. Acta Crystallogr D Biol Crystallogr; 2004 Mar 07; 60(Pt 3):594-6. PubMed ID: 14993705 [Abstract] [Full Text] [Related]
69. 3D-QSAR studies on chromone derivatives as HIV-1 protease inhibitors: application of molecular field analysis. Nunthanavanit P, Anthony NG, Johnston BF, Mackay SP, Ungwitayatorn J. Arch Pharm (Weinheim); 2008 Jun 07; 341(6):357-64. PubMed ID: 18442018 [Abstract] [Full Text] [Related]
70. Suppression of HIV-1 protease inhibitor resistance by phosphonate-mediated solvent anchoring. Cihlar T, He GX, Liu X, Chen JM, Hatada M, Swaminathan S, McDermott MJ, Yang ZY, Mulato AS, Chen X, Leavitt SA, Stray KM, Lee WA. J Mol Biol; 2006 Oct 27; 363(3):635-47. PubMed ID: 16979654 [Abstract] [Full Text] [Related]
71. Design of HIV protease inhibitors based on inorganic polyhedral metallacarboranes. Rezácová P, Pokorná J, Brynda J, Kozísek M, Cígler P, Lepsík M, Fanfrlík J, Rezác J, Grantz Sasková K, Sieglová I, Plesek J, Sícha V, Grüner B, Oberwinkler H, Sedlácek' J, Kräusslich HG, Hobza P, Král V, Konvalinka J. J Med Chem; 2009 Nov 26; 52(22):7132-41. PubMed ID: 19874035 [Abstract] [Full Text] [Related]
72. An approach to rapid estimation of relative binding affinities of enzyme inhibitors: application to peptidomimetic inhibitors of the human immunodeficiency virus type 1 protease. Viswanadhan VN, Reddy MR, Wlodawer A, Varney MD, Weinstein JN. J Med Chem; 1996 Feb 02; 39(3):705-12. PubMed ID: 8576913 [Abstract] [Full Text] [Related]
73. Structure-based design of carbon nanotubes as HIV-1 protease inhibitors: atomistic and coarse-grained simulations. Cheng Y, Li D, Ji B, Shi X, Gao H. J Mol Graph Model; 2010 Sep 02; 29(2):171-7. PubMed ID: 20580296 [Abstract] [Full Text] [Related]
74. Optimizing the binding of fullerene inhibitors of the HIV-1 protease through predicted increases in hydrophobic desolvation. Friedman SH, Ganapathi PS, Rubin Y, Kenyon GL. J Med Chem; 1998 Jun 18; 41(13):2424-9. PubMed ID: 9632374 [Abstract] [Full Text] [Related]
75. Advances in automated docking applied to human immunodeficiency virus type 1 protease. Miller MD, Sheridan RP, Kearsley SK, Underwood DJ. Methods Enzymol; 1994 Jun 18; 241():354-70. PubMed ID: 7854188 [No Abstract] [Full Text] [Related]
76. Design of new selective inhibitors of cyclooxygenase-2 by dynamic assembly of molecular building blocks. Zhu J, Yu H, Fan H, Liu H, Shi Y. J Comput Aided Mol Des; 2001 May 18; 15(5):447-63. PubMed ID: 11394738 [Abstract] [Full Text] [Related]
77. Ligand conformational and solvation/desolvation free energy in protein-ligand complex formation. Kolár M, Fanfrlík J, Hobza P. J Phys Chem B; 2011 Apr 28; 115(16):4718-24. PubMed ID: 21466174 [Abstract] [Full Text] [Related]
78. Energy minimum theorem based on AGA, Lyapunov and force field for CADD techniques. Sung WT, Liu YF. Comput Biol Med; 2010 Feb 28; 40(2):215-22. PubMed ID: 20047735 [Abstract] [Full Text] [Related]
79. Identification of a loop outside the active site cavity of the human immunodeficiency virus proteases which confers inhibitor specificity. Towler EM, Thompson SK, Tomaszek T, Debouck C. Biochemistry; 1997 Apr 29; 36(17):5128-33. PubMed ID: 9136873 [Abstract] [Full Text] [Related]
80. Targeting structural flexibility in HIV-1 protease inhibitor binding. Hornak V, Simmerling C. Drug Discov Today; 2007 Feb 29; 12(3-4):132-8. PubMed ID: 17275733 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]