These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


135 related items for PubMed ID: 10451048

  • 1. Height change caused by creep in intervertebral discs: a sagittal plane model.
    Keller TS, Nathan M.
    J Spinal Disord; 1999 Aug; 12(4):313-24. PubMed ID: 10451048
    [Abstract] [Full Text] [Related]

  • 2. Mechanical behavior of the human lumbar spine. I. Creep analysis during static compressive loading.
    Keller TS, Spengler DM, Hansson TH.
    J Orthop Res; 1987 Aug; 5(4):467-78. PubMed ID: 3681521
    [Abstract] [Full Text] [Related]

  • 3. Prediction of osteoporotic spinal deformity.
    Keller TS, Harrison DE, Colloca CJ, Harrison DD, Janik TJ.
    Spine (Phila Pa 1976); 2003 Mar 01; 28(5):455-62. PubMed ID: 12616157
    [Abstract] [Full Text] [Related]

  • 4. Changes in spinal height following sustained lumbar flexion and extension postures: a clinical measure of intervertebral disc hydration using stadiometry.
    Owens SC, Brismée JM, Pennell PN, Dedrick GS, Sizer PS, James CR.
    J Manipulative Physiol Ther; 2009 Jun 01; 32(5):358-63. PubMed ID: 19539118
    [Abstract] [Full Text] [Related]

  • 5. Mechanical differences between lumbar and tail discs in the mouse.
    Sarver JJ, Elliott DM.
    J Orthop Res; 2005 Jan 01; 23(1):150-5. PubMed ID: 15607887
    [Abstract] [Full Text] [Related]

  • 6. Contribution of vertebral [corrected] bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments.
    van der Veen AJ, Mullender MG, Kingma I, van Dieen JH, Smit TH.
    J Biomech; 2008 Jan 01; 41(6):1260-8. PubMed ID: 18328489
    [Abstract] [Full Text] [Related]

  • 7. The compressive creep properties of normal and degenerated murine intervertebral discs.
    Palmer EI, Lotz JC.
    J Orthop Res; 2004 Jan 01; 22(1):164-9. PubMed ID: 14656676
    [Abstract] [Full Text] [Related]

  • 8. The viscoelastic standard nonlinear solid model: predicting the response of the lumbar intervertebral disk to low-frequency vibrations.
    Groth KM, Granata KP.
    J Biomech Eng; 2008 Jun 01; 130(3):031005. PubMed ID: 18532854
    [Abstract] [Full Text] [Related]

  • 9. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G, Pandit A, Apatsidis D.
    Clin Biomech (Bristol, Avon); 2008 Aug 01; 23(7):859-69. PubMed ID: 18423954
    [Abstract] [Full Text] [Related]

  • 10. The risk of disc prolapses with complex loading in different degrees of disc degeneration - a finite element analysis.
    Schmidt H, Kettler A, Rohlmann A, Claes L, Wilke HJ.
    Clin Biomech (Bristol, Avon); 2007 Nov 01; 22(9):988-98. PubMed ID: 17822814
    [Abstract] [Full Text] [Related]

  • 11. The influence of static axial torque in combined loading on intervertebral joint failure mechanics using a porcine model.
    Drake JD, Aultman CD, McGill SM, Callaghan JP.
    Clin Biomech (Bristol, Avon); 2005 Dec 01; 20(10):1038-45. PubMed ID: 16098646
    [Abstract] [Full Text] [Related]

  • 12. Vertebral fractures and separations of endplates after traumatic loading of adolescent porcine spines with experimentally-induced disc degeneration.
    Baranto A, Ekström L, Holm S, Hellström M, Hansson HA, Swärd L.
    Clin Biomech (Bristol, Avon); 2005 Dec 01; 20(10):1046-54. PubMed ID: 16102879
    [Abstract] [Full Text] [Related]

  • 13. [The deformation behavior of human lumbar intervertebral discs subjected to long term axial dynamic compressive forces (author's transl)].
    Köller W, Funke F, Hartmann F.
    Z Orthop Ihre Grenzgeb; 1981 Apr 01; 119(2):206-16. PubMed ID: 7234089
    [Abstract] [Full Text] [Related]

  • 14. The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs.
    Kemper AR, McNally C, Duma SM.
    Biomed Sci Instrum; 2007 Apr 01; 43():176-81. PubMed ID: 17487077
    [Abstract] [Full Text] [Related]

  • 15. Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis.
    Pollintine P, van Tunen MS, Luo J, Brown MD, Dolan P, Adams MA.
    Spine (Phila Pa 1976); 2010 Feb 15; 35(4):386-94. PubMed ID: 20110846
    [Abstract] [Full Text] [Related]

  • 16. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis.
    Chung SK, Kim YE, Wang KC.
    Spine (Phila Pa 1976); 2009 May 20; 34(12):1281-6. PubMed ID: 19455003
    [Abstract] [Full Text] [Related]

  • 17. Finite element analysis of weightbath hydrotraction treatment of degenerated lumbar spine segments in elastic phase.
    Kurutz M, Oroszváry L.
    J Biomech; 2010 Feb 10; 43(3):433-41. PubMed ID: 19883918
    [Abstract] [Full Text] [Related]

  • 18. Effect of a posterior dynamic implant adjacent to a rigid spinal fixator.
    Zander T, Rohlmann A, Burra NK, Bergmann G.
    Clin Biomech (Bristol, Avon); 2006 Oct 10; 21(8):767-74. PubMed ID: 16750875
    [Abstract] [Full Text] [Related]

  • 19. Effects of fusion-bone stiffness on the mechanical behavior of the lumbar spine after vertebral body replacement.
    Rohlmann A, Zander T, Bergmann G.
    Clin Biomech (Bristol, Avon); 2006 Mar 10; 21(3):221-7. PubMed ID: 16356613
    [Abstract] [Full Text] [Related]

  • 20. Total disc replacement positioning affects facet contact forces and vertebral body strains.
    Rundell SA, Auerbach JD, Balderston RA, Kurtz SM.
    Spine (Phila Pa 1976); 2008 Nov 01; 33(23):2510-7. PubMed ID: 18978591
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.