These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


67 related items for PubMed ID: 10453979

  • 21. Oxidation of low density lipoprotein leads to particle aggregation and altered macrophage recognition.
    Hoff HF, Whitaker TE, O'Neil J.
    J Biol Chem; 1992 Jan 05; 267(1):602-9. PubMed ID: 1730620
    [Abstract] [Full Text] [Related]

  • 22. Macrophages can decrease the level of cholesteryl ester hydroperoxides in low density lipoprotein.
    Baoutina A, Dean RT, Jessup W.
    J Biol Chem; 2000 Jan 21; 275(3):1635-44. PubMed ID: 10636856
    [Abstract] [Full Text] [Related]

  • 23. Different apolipoprotein B breakdown patterns in models of oxidized low density lipoprotein.
    Viita H, Närvänen O, Ylä-Herttuala S.
    Life Sci; 1999 Jan 21; 65(8):783-93. PubMed ID: 10466744
    [Abstract] [Full Text] [Related]

  • 24. Batroxobin accelerates lipid accumulation of peroxidized low density lipoprotein in mouse peritoneal macrophages.
    Yu S, Kuang P, Kanazawa T, Onodera K, Metoki H, Oike Y.
    Pathobiology; 1996 Jan 21; 64(5):275-8. PubMed ID: 9068011
    [Abstract] [Full Text] [Related]

  • 25. Modification of delipidated apoprotein B of low density lipoprotein by lipid oxidation products in relation to macrophage scavenger receptor binding.
    Alaiz M, Beppu M, Ohishi K, Kikugawa K.
    Biol Pharm Bull; 1994 Jan 21; 17(1):51-7. PubMed ID: 8148817
    [Abstract] [Full Text] [Related]

  • 26. The effects of radix Salviae miltiorrhizae on lipid accumulation of peroxidized low density lipoprotein in mouse peritoneal macrophages--lipid analysis and morphological studies.
    Yu S, Kuang P, Kanazawa T, Onodera K, Metoki H, Oike Y.
    J Tradit Chin Med; 1998 Dec 21; 18(4):292-9. PubMed ID: 10453600
    [Abstract] [Full Text] [Related]

  • 27. Macrophages take up triacylglycerol-rich emulsions at a faster rate upon co-incubation with native and modified LDL: An investigation on the role of natural chylomicrons in atherosclerosis.
    Carvalho MD, Harada LM, Gidlund M, Ketelhuth DF, Boschcov P, Quintão EC.
    J Cell Biochem; 2002 Dec 21; 84(2):309-23. PubMed ID: 11787060
    [Abstract] [Full Text] [Related]

  • 28. Luminescence in the study of lipid metabolism.
    Wieland E, Niedmann D, Diedrich F, Seidel D, Kather H.
    J Biolumin Chemilumin; 1989 Jul 21; 4(1):436-45. PubMed ID: 2801230
    [Abstract] [Full Text] [Related]

  • 29. Oxidative modification of lipoprotein(a) and the effect of beta-carotene.
    Naruszewicz M, Selinger E, Davignon J.
    Metabolism; 1992 Nov 21; 41(11):1215-24. PubMed ID: 1435294
    [Abstract] [Full Text] [Related]

  • 30. Bilirubin sensitized photooxidation of human plasma low density lipoprotein.
    Hulea SA, Smith TL, Wasowicz E, Kummerow FA.
    Biochim Biophys Acta; 1996 Dec 13; 1304(3):197-209. PubMed ID: 8982266
    [Abstract] [Full Text] [Related]

  • 31. Oxidation of hemoglobin by lipid hydroperoxide associated with low-density lipoprotein (LDL) and increased cytotoxic effect by LDL oxidation in heme oxygenase-1 (HO-1) deficiency.
    Nagy E, Jeney V, Yachie A, Szabó RP, Wagner O, Vercellotti GM, Eaton JW, Balla G, Balla J.
    Cell Mol Biol (Noisy-le-grand); 2005 Sep 30; 51(4):377-85. PubMed ID: 16309588
    [Abstract] [Full Text] [Related]

  • 32. [Inhibition of cellular uptake of low-density lipoprotein by mouse peritoneal macrophages that were pre-exposed in vivo to platelet secretory products].
    Osamah H, Brook JG, Aviram M.
    Harefuah; 1993 Mar 01; 124(5):277-81. PubMed ID: 8495919
    [No Abstract] [Full Text] [Related]

  • 33. Uptake by macrophages of low-density lipoprotein damaged by nitrogen dioxide in air.
    Kikugawa K, Beppu M, Okamoto Y.
    Lipids; 1995 Apr 01; 30(4):313-20. PubMed ID: 7609598
    [Abstract] [Full Text] [Related]

  • 34. Chelation of copper reduces inhibition by oxidized lipoproteins of endothelium-dependent relaxation in porcine coronary arteries.
    Hayashi T, Ishikawa T, Kuzuya M, Naito M, Yamada K, Asai K, Hidaka H, Iguchi A.
    Heart Vessels; 1994 Apr 01; 9(6):283-91. PubMed ID: 7883650
    [Abstract] [Full Text] [Related]

  • 35. Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products.
    Steinbrecher UP.
    J Biol Chem; 1987 Mar 15; 262(8):3603-8. PubMed ID: 3102491
    [Abstract] [Full Text] [Related]

  • 36. Increased macrophage uptake of irreversibly glycated albumin modified-low density lipoproteins of normal and diabetic subjects is mediated by non-saturable mechanisms.
    Dobrian A, Lazar V, Tirziu D, Simionescu M.
    Biochim Biophys Acta; 1996 Oct 07; 1317(1):5-14. PubMed ID: 8876621
    [Abstract] [Full Text] [Related]

  • 37. Conformational changes in oxidized LDL recognized by mouse peritoneal macrophages.
    Maeba R, Shimasaki H, Ueta N.
    Biochim Biophys Acta; 1994 Nov 17; 1215(1-2):79-86. PubMed ID: 7948011
    [Abstract] [Full Text] [Related]

  • 38. Macrophage uptake of cholesterol-containing particles derived from LDL and isolated from atherosclerotic lesions.
    Hoff HF, O'Neil J, Pepin JM, Cole TB.
    Eur Heart J; 1990 Aug 17; 11 Suppl E():105-15. PubMed ID: 2226518
    [Abstract] [Full Text] [Related]

  • 39. Elevated plasma lipid hydroperoxides in patients with coronary artery disease.
    Kovacs IB, Jahangiri M, Rees GM, Görög P.
    Am Heart J; 1997 Sep 17; 134(3):572-6. PubMed ID: 9327718
    [Abstract] [Full Text] [Related]

  • 40. The limitations of an iodometric aerobic assay for peroxides.
    Gebicki JM, Collins J, Baoutina A, Phair P.
    Anal Biochem; 1996 Sep 05; 240(2):235-41. PubMed ID: 8811916
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 4.