These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


274 related items for PubMed ID: 10456233

  • 1. Chronic effects of xanthines on levels of central receptors in mice.
    Shi D, Daly JW.
    Cell Mol Neurobiol; 1999 Dec; 19(6):719-32. PubMed ID: 10456233
    [Abstract] [Full Text] [Related]

  • 2. Chronic caffeine alters the density of adenosine, adrenergic, cholinergic, GABA, and serotonin receptors and calcium channels in mouse brain.
    Shi D, Nikodijević O, Jacobson KA, Daly JW.
    Cell Mol Neurobiol; 1993 Jun; 13(3):247-61. PubMed ID: 8242688
    [Abstract] [Full Text] [Related]

  • 3. Effects of chronic caffeine on adenosine, dopamine and acetylcholine systems in mice.
    Shi D, Nikodijević O, Jacobson KA, Daly JW.
    Arch Int Pharmacodyn Ther; 1994 Jun; 328(3):261-87. PubMed ID: 7625882
    [Abstract] [Full Text] [Related]

  • 4. Pharmacological interactions between magnesium ion and adenosine on monoaminergic system in the central nervous system.
    Okada M, Kaneko S.
    Magnes Res; 1998 Dec; 11(4):289-305. PubMed ID: 9884987
    [Abstract] [Full Text] [Related]

  • 5. Caffeine and theophylline analogues: correlation of behavioral effects with activity as adenosine receptor antagonists and as phosphodiesterase inhibitors.
    Choi OH, Shamim MT, Padgett WL, Daly JW.
    Life Sci; 1988 Dec; 43(5):387-98. PubMed ID: 2456442
    [Abstract] [Full Text] [Related]

  • 6. A1 and A2A adenosine receptors and A1 mRNA in mouse brain: effect of long-term caffeine treatment.
    Johansson B, Georgiev V, Lindström K, Fredholm BB.
    Brain Res; 1997 Jul 11; 762(1-2):153-64. PubMed ID: 9262169
    [Abstract] [Full Text] [Related]

  • 7. Antagonism of adenosine receptors by caffeine and caffeine metabolites in equine forebrain tissues.
    Chou CC, Vickroy TW.
    Am J Vet Res; 2003 Feb 11; 64(2):216-24. PubMed ID: 12602592
    [Abstract] [Full Text] [Related]

  • 8. Differential effects of adenosine receptor subtypes on release and reuptake of hippocampal serotonin.
    Okada M, Kawata Y, Murakami T, Wada K, Mizuno K, Kondo T, Kaneko S.
    Eur J Neurosci; 1999 Jan 11; 11(1):1-9. PubMed ID: 9987006
    [Abstract] [Full Text] [Related]

  • 9. Involvement of adenosine A1 and A2A receptors in the motor effects of caffeine after its acute and chronic administration.
    Karcz-Kubicha M, Antoniou K, Terasmaa A, Quarta D, Solinas M, Justinova Z, Pezzola A, Reggio R, Müller CE, Fuxe K, Goldberg SR, Popoli P, Ferré S.
    Neuropsychopharmacology; 2003 Jul 11; 28(7):1281-91. PubMed ID: 12700682
    [Abstract] [Full Text] [Related]

  • 10. Discriminative effects of CGS 15943, a competitive adenosine receptor antagonist, in monkeys: comparison to methylxanthines.
    Holtzman SG.
    J Pharmacol Exp Ther; 1996 May 11; 277(2):739-46. PubMed ID: 8627553
    [Abstract] [Full Text] [Related]

  • 11. Analogues of caffeine and theophylline: effect of structural alterations on affinity at adenosine receptors.
    Daly JW, Padgett WL, Shamim MT.
    J Med Chem; 1986 Jul 11; 29(7):1305-8. PubMed ID: 3806581
    [Abstract] [Full Text] [Related]

  • 12. Adenosine A1 receptor down-regulation in mothers and fetal brain after caffeine and theophylline treatments to pregnant rats.
    León D, Albasanz JL, Ruíz MA, Fernández M, Martín M.
    J Neurochem; 2002 Aug 11; 82(3):625-34. PubMed ID: 12153486
    [Abstract] [Full Text] [Related]

  • 13. Postsynaptic dopamine/adenosine interaction: II. Postsynaptic dopamine agonism and adenosine antagonism of methylxanthines in short-term reserpinized mice.
    Ferré S, Herrera-Marschitz M, Grabowska-Andén M, Casas M, Ungerstedt U, Andén NE.
    Eur J Pharmacol; 1991 Jan 03; 192(1):31-7. PubMed ID: 1828237
    [Abstract] [Full Text] [Related]

  • 14. Adenosinergic protection of dopaminergic and GABAergic neurons against mitochondrial inhibition through receptors located in the substantia nigra and striatum, respectively.
    Alfinito PD, Wang SP, Manzino L, Rijhsinghani S, Zeevalk GD, Sonsalla PK.
    J Neurosci; 2003 Nov 26; 23(34):10982-7. PubMed ID: 14645494
    [Abstract] [Full Text] [Related]

  • 15. Effect of different xanthines and phosphodiesterase inhibitors on c-fos expression in rat striatum.
    Svenningsson P, Johansson B, Fredholm BB.
    Acta Physiol Scand; 1995 May 26; 154(1):17-24. PubMed ID: 7572198
    [Abstract] [Full Text] [Related]

  • 16. 3,7-Dimethyl-1-propargylxanthine: a potent and selective in vivo antagonist of adenosine analogs.
    Seale TW, Abla KA, Shamim MT, Carney JM, Daly JW.
    Life Sci; 1988 May 26; 43(21):1671-84. PubMed ID: 3193854
    [Abstract] [Full Text] [Related]

  • 17. Purine suppression of proliferation of Sertoli-like TM4 cells in culture.
    Shaban M, Smith RA, Stone TW.
    Cell Prolif; 1995 Dec 26; 28(12):673-82. PubMed ID: 8634374
    [Abstract] [Full Text] [Related]

  • 18. Long-term treatment with some methylxanthines decreases the susceptibility to bicuculline- and pentylenetetrazol-induced seizures in mice. Relationship to c-fos expression and receptor binding.
    Johansson B, Georgiev V, Kuosmanen T, Fredholm BB.
    Eur J Neurosci; 1996 Dec 26; 8(12):2447-58. PubMed ID: 8996794
    [Abstract] [Full Text] [Related]

  • 19. Synthesis and structure-activity relationships of 3,7-dimethyl-1-propargylxanthine derivatives, A2A-selective adenosine receptor antagonists.
    Müller CE, Geis U, Hipp J, Schobert U, Frobenius W, Pawłowski M, Suzuki F, Sandoval-Ramírez J.
    J Med Chem; 1997 Dec 19; 40(26):4396-405. PubMed ID: 9435909
    [Abstract] [Full Text] [Related]

  • 20. Methyl xanthines enhance taste: evidence for modulation of taste by adenosine receptor.
    Schiffman SS, Gill JM, Diaz C.
    Pharmacol Biochem Behav; 1985 Feb 19; 22(2):195-203. PubMed ID: 2580320
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.