These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


63 related items for PubMed ID: 10461462

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Front face fluorescence spectroscopy as a tool for the assessment of egg freshness during storage at a temperature of 12.2 degrees C and 87% relative humidity.
    Karoui R, Schoonheydt R, Decuypere E, Nicolaï B, De Baerdemaeker J.
    Anal Chim Acta; 2007 Jan 16; 582(1):83-91. PubMed ID: 17386478
    [Abstract] [Full Text] [Related]

  • 23. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy.
    Zhao J, Lui H, McLean DI, Zeng H.
    Appl Spectrosc; 2007 Nov 16; 61(11):1225-32. PubMed ID: 18028702
    [Abstract] [Full Text] [Related]

  • 24. Visible and near-infrared spectral changes in plasma of psychiatric patients.
    Kato YH, Matsunaga H, Sakudo A, Ikuta K.
    Int J Mol Med; 2008 Oct 16; 22(4):513-9. PubMed ID: 18813859
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Infrared spectroscopy: a reagent-free method to distinguish Alzheimer's disease patients from normal-aging subjects.
    Peuchant E, Richard-Harston S, Bourdel-Marchasson I, Dartigues JF, Letenneur L, Barberger-Gateau P, Arnaud-Dabernat S, Daniel JY.
    Transl Res; 2008 Sep 16; 152(3):103-12. PubMed ID: 18774539
    [Abstract] [Full Text] [Related]

  • 27. Characteristics of neuronal lipofuscin in the superior temporal gyrus in Alzheimer's disease do not differ from non-diseased controls: a comparison with disease-related changes in the superior frontal gyrus.
    Mountjoy CQ, Dowson JH, Harrington C, Cairns MR, Wilton-Cox H.
    Acta Neuropathol; 2005 May 16; 109(5):490-6. PubMed ID: 15759127
    [Abstract] [Full Text] [Related]

  • 28. Mapping of temporal and parietal cortex in progressive nonfluent aphasia and Alzheimer's disease using chemical shift imaging, voxel-based morphometry and positron emission tomography.
    Zahn R, Buechert M, Overmans J, Talazko J, Specht K, Ko CW, Thiel T, Kaufmann R, Dykierek P, Juengling F, Hüll M.
    Psychiatry Res; 2005 Nov 30; 140(2):115-31. PubMed ID: 16253483
    [Abstract] [Full Text] [Related]

  • 29. Near-Infrared Optical Spectroscopy In Vivo Distinguishes Subjects with Alzheimer's Disease from Age-Matched Controls.
    Greco FA, McKee AC, Kowall NW, Hanlon EB.
    J Alzheimers Dis; 2021 Nov 30; 82(2):791-802. PubMed ID: 34092628
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Raman spectroscopy and machine learning for biomedical applications: Alzheimer's disease diagnosis based on the analysis of cerebrospinal fluid.
    Ryzhikova E, Ralbovsky NM, Sikirzhytski V, Kazakov O, Halamkova L, Quinn J, Zimmerman EA, Lednev IK.
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar 05; 248():119188. PubMed ID: 33268033
    [Abstract] [Full Text] [Related]

  • 33. Vibrational spectroscopic analysis of peripheral blood plasma of patients with Alzheimer's disease.
    Carmona P, Molina M, López-Tobar E, Toledano A.
    Anal Bioanal Chem; 2015 Oct 05; 407(25):7747-56. PubMed ID: 26255297
    [Abstract] [Full Text] [Related]

  • 34. Raman spectroscopy of blood serum for Alzheimer's disease diagnostics: specificity relative to other types of dementia.
    Ryzhikova E, Kazakov O, Halamkova L, Celmins D, Malone P, Molho E, Zimmerman EA, Lednev IK.
    J Biophotonics; 2015 Jul 05; 8(7):584-96. PubMed ID: 25256347
    [Abstract] [Full Text] [Related]

  • 35. Blood-based near-infrared spectroscopy for the rapid low-cost detection of Alzheimer's disease.
    Paraskevaidi M, Morais CLM, Freitas DLD, Lima KMG, Mann DMA, Allsop D, Martin-Hirsch PL, Martin FL.
    Analyst; 2018 Dec 03; 143(24):5959-5964. PubMed ID: 30183030
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Label-Free Fluorescence Spectroscopy for Detecting Key Biomolecules in Brain Tissue from a Mouse Model of Alzheimer's Disease.
    Shi L, Lu L, Harvey G, Harvey T, Rodríguez-Contreras A, Alfano RR.
    Sci Rep; 2017 Jun 01; 7(1):2599. PubMed ID: 28572632
    [Abstract] [Full Text] [Related]

  • 38. Optical spectroscopy: current advances and future applications in cancer diagnostics and therapy.
    Evers Dj, Hendriks B, Lucassen G, Ruers T.
    Future Oncol; 2012 Mar 01; 8(3):307-20. PubMed ID: 22409466
    [Abstract] [Full Text] [Related]

  • 39. A multimodal spectroscopy system for real-time disease diagnosis.
    Sćepanović OR, Volynskaya Z, Kong CR, Galindo LH, Dasari RR, Feld MS.
    Rev Sci Instrum; 2009 Apr 01; 80(4):043103. PubMed ID: 19405647
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 4.