These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Pro-oxidant and antioxidant mechanisms of etoposide in HL-60 cells: role of myeloperoxidase. Kagan VE, Kuzmenko AI, Tyurina YY, Shvedova AA, Matsura T, Yalowich JC. Cancer Res; 2001 Nov 01; 61(21):7777-84. PubMed ID: 11691792 [Abstract] [Full Text] [Related]
3. Direct evidence for recycling of myeloperoxidase-catalyzed phenoxyl radicals of a vitamin E homologue, 2,2,5,7,8-pentamethyl-6-hydroxy chromane, by ascorbate/dihydrolipoate in living HL-60 cells. Kagan VE, Kuzmenko AI, Shvedova AA, Kisin ER, Li R, Martin I, Quinn PJ, Tyurin VA, Tyurina YY, Yalowich JC. Biochim Biophys Acta; 2003 Mar 17; 1620(1-3):72-84. PubMed ID: 12595076 [Abstract] [Full Text] [Related]
4. Myeloperoxidase-catalyzed redox-cycling of phenol promotes lipid peroxidation and thiol oxidation in HL-60 cells. Goldman R, Claycamp GH, Sweetland MA, Sedlov AV, Tyurin VA, Kisin ER, Tyurina YY, Ritov VB, Wenger SL, Grant SG, Kagan VE. Free Radic Biol Med; 1999 Nov 17; 27(9-10):1050-63. PubMed ID: 10569638 [Abstract] [Full Text] [Related]
5. Phenoxyl radicals of etoposide (VP-16) can directly oxidize intracellular thiols: protective versus damaging effects of phenolic antioxidants. Tyurina YY, Tyurin VA, Yalowich JC, Quinn PJ, Claycamp HG, Schor NF, Pitt BR, Kagan VE. Toxicol Appl Pharmacol; 1995 Apr 17; 131(2):277-88. PubMed ID: 7716769 [Abstract] [Full Text] [Related]
9. Myeloperoxidase-dependent oxidation of etoposide in human myeloid progenitor CD34+ cells. Vlasova II, Feng WH, Goff JP, Giorgianni A, Do D, Gollin SM, Lewis DW, Kagan VE, Yalowich JC. Mol Pharmacol; 2011 Mar 21; 79(3):479-87. PubMed ID: 21097707 [Abstract] [Full Text] [Related]
10. Antioxidant paradoxes of phenolic compounds: peroxyl radical scavenger and lipid antioxidant, etoposide (VP-16), inhibits sarcoplasmic reticulum Ca(2+)-ATPase via thiol oxidation by its phenoxyl radical. Ritov VB, Goldman R, Stoyanovsky DA, Menshikova EV, Kagan VE. Arch Biochem Biophys; 1995 Aug 01; 321(1):140-52. PubMed ID: 7639514 [Abstract] [Full Text] [Related]
11. Glutathione propagates oxidative stress triggered by myeloperoxidase in HL-60 cells. Evidence for glutathionyl radical-induced peroxidation of phospholipids and cytotoxicity. Borisenko GG, Martin I, Zhao Q, Amoscato AA, Tyurina YY, Kagan VE. J Biol Chem; 2004 May 28; 279(22):23453-62. PubMed ID: 15039448 [Abstract] [Full Text] [Related]
12. Phenoxyl radical-induced thiol-dependent generation of reactive oxygen species: implications for benzene toxicity. Stoyanovsky DA, Goldman R, Claycamp HG, Kagan VE. Arch Biochem Biophys; 1995 Mar 10; 317(2):315-23. PubMed ID: 7893144 [Abstract] [Full Text] [Related]
13. Anti-/pro-oxidant effects of phenolic compounds in cells: are colchicine metabolites chain-breaking antioxidants? Modriansky M, Tyurina YY, Tyurin VA, Matsura T, Shvedova AA, Yalowich JC, Kagan VE. Toxicology; 2002 Aug 01; 177(1):105-17. PubMed ID: 12126799 [Abstract] [Full Text] [Related]
14. Redox cycling of phenol induces oxidative stress in human epidermal keratinocytes. Shvedova AA, Kommineni C, Jeffries BA, Castranova V, Tyurina YY, Tyurin VA, Serbinova EA, Fabisiak JP, Kagan VE. J Invest Dermatol; 2000 Feb 01; 114(2):354-64. PubMed ID: 10651998 [Abstract] [Full Text] [Related]
15. Tyrosinase-induced phenoxyl radicals of etoposide (VP-16): interaction with reductants in model systems, K562 leukemic cell and nuclear homogenates. Stoyanovsky D, Yalowich J, Gantchev T, Kagan V. Free Radic Res Commun; 1993 Feb 01; 19(6):371-86. PubMed ID: 8168727 [Abstract] [Full Text] [Related]
16. Roles of superoxide and myeloperoxidase in ascorbate oxidation in stimulated neutrophils and H2O2-treated HL60 cells. Parker A, Cuddihy SL, Son TG, Vissers MC, Winterbourn CC. Free Radic Biol Med; 2011 Oct 01; 51(7):1399-405. PubMed ID: 21791243 [Abstract] [Full Text] [Related]
17. Peroxidase-catalyzed oxidation of beta-carotene in HL-60 cells and in model systems: involvement of phenoxyl radicals. Tyurin VA, Carta G, Tyurina YY, Banni S, Day BW, Corongiu FP, Kagan VE. Lipids; 1997 Feb 01; 32(2):131-42. PubMed ID: 9075202 [Abstract] [Full Text] [Related]
18. Myeloperoxidase-catalyzed metabolism of etoposide to its quinone and glutathione adduct forms in HL60 cells. Fan Y, Schreiber EM, Giorgianni A, Yalowich JC, Day BW. Chem Res Toxicol; 2006 Jul 01; 19(7):937-43. PubMed ID: 16841962 [Abstract] [Full Text] [Related]
19. Reactions of phenoxyl radicals with NADPH-cytochrome P-450 oxidoreductase and NADPH: reduction of the radicals and inhibition of the enzyme. Goldman R, Tsyrlov IB, Grogan J, Kagan VE. Biochemistry; 1997 Mar 18; 36(11):3186-92. PubMed ID: 9115995 [Abstract] [Full Text] [Related]
20. Reduction of phenoxyl radicals of the antitumour agent etoposide (VP-16) by glutathione and protein sulfhydryls in human leukaemia cells: Implications for cytotoxicity. Yalowich JC, Tyurina YY, Tyurin VA, Allan WP, Kagan VE. Toxicol In Vitro; 1996 Feb 18; 10(1):59-68. PubMed ID: 20650183 [Abstract] [Full Text] [Related] Page: [Next] [New Search]