These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
228 related items for PubMed ID: 10463503
1. Development of design methods for a centrifugal blood pump with a fluid dynamic approach: results in hemolysis tests. Masuzawa T, Tsukiya T, Endo S, Tatsumi E, Taenaka Y, Takano H, Yamane T, Nishida M, Asztalos B, Miyazoe Y, Ito K, Sawairi T, Konishi Y. Artif Organs; 1999 Aug; 23(8):757-61. PubMed ID: 10463503 [Abstract] [Full Text] [Related]
2. Development of design methods of a centrifugal blood pump with in vitro tests, flow visualization, and computational fluid dynamics: results in hemolysis tests. Takiura K, Masuzawa T, Endo S, Wakisaka Y, Tatsumi E, Taenaka Y, Takano H, Yamane T, Nishida M, Asztalos B, Konishi Y, Miyazoe Y, Ito K. Artif Organs; 1998 May; 22(5):393-8. PubMed ID: 9609347 [Abstract] [Full Text] [Related]
3. Computational fluid dynamics analysis to establish the design process of a centrifugal blood pump: second report. Miyazoe Y, Sawairi T, Ito K, Konishi Y, Yamane T, Nishida M, Asztalos B, Masuzawa T, Tsukiya T, Endo S, Taenaka Y. Artif Organs; 1999 Aug; 23(8):762-8. PubMed ID: 10463504 [Abstract] [Full Text] [Related]
4. Flow visualization study to improve hemocompatibility of a centrifugal blood pump. Nishida M, Asztalos B, Yamane T, Masuzawa T, Tsukiya T, Endo S, Taenaka Y, Miyazoe Y, Ito K, Konishi Y. Artif Organs; 1999 Aug; 23(8):697-703. PubMed ID: 10463491 [Abstract] [Full Text] [Related]
5. Computational fluid dynamic analyses to establish design process of centrifugal blood pumps. Miyazoe Y, Sawairi T, Ito K, Konishi Y, Yamane T, Nishida M, Masuzawa T, Takiura K, Taenaka Y. Artif Organs; 1998 May; 22(5):381-5. PubMed ID: 9609345 [Abstract] [Full Text] [Related]
6. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump. Good BC, Manning KB. Artif Organs; 2020 Jul; 44(7):E263-E276. PubMed ID: 31971269 [Abstract] [Full Text] [Related]
7. Study of secondary flow in centrifugal blood pumps using a flow visualization method with a high-speed video camera. Sakuma I, Fukui Y, Dohi T. Artif Organs; 1996 Jun; 20(6):541-5. PubMed ID: 8817952 [Abstract] [Full Text] [Related]
8. Elimination of adverse leakage flow in a miniature pediatric centrifugal blood pump by computational fluid dynamics-based design optimization. Wu J, Antaki JF, Wagner WR, Snyder TA, Paden BE, Borovetz HS. ASAIO J; 2005 Jun; 51(5):636-43. PubMed ID: 16322730 [Abstract] [Full Text] [Related]
9. Magnetically suspended centrifugal blood pump with a radial magnetic driver. Hoshi H, Katakoa K, Ohuchi K, Asama J, Shinshi T, Shimokohbe A, Takatani S. ASAIO J; 2005 Jun; 51(1):60-4. PubMed ID: 15745136 [Abstract] [Full Text] [Related]
10. The effect of the impeller-driver magnetic coupling distance on hemolysis in a compact centrifugal pump. Nakazawa T, Makinouchi K, Takami Y, Glueck J, Takatani S, Nosé Y. Artif Organs; 1996 Mar; 20(3):252-7. PubMed ID: 8694696 [Abstract] [Full Text] [Related]
11. Minimization of hemolysis in centrifugal blood pumps: influence of different geometries. Schima H, Müller MR, Papantonis D, Schlusche C, Huber L, Schmidt C, Trubel W, Thoma H, Losert U, Wolner E. Int J Artif Organs; 1993 Jul; 16(7):521-9. PubMed ID: 8370607 [Abstract] [Full Text] [Related]
12. Numerical investigation on the effect of impeller axial position on hemodynamics of an extracorporeal centrifugal blood pump. Lv S, He ZP, Liu GM, Hu SS. Comput Methods Biomech Biomed Engin; 2024 Oct; 27(13):1744-1755. PubMed ID: 37724774 [Abstract] [Full Text] [Related]
13. Effect of blade curvature on the hemolytic and hydraulic characteristics of a centrifugal blood pump. Ozturk C, Aka IB, Lazoglu I. Int J Artif Organs; 2018 Nov; 41(11):730-737. PubMed ID: 29998774 [Abstract] [Full Text] [Related]
15. Comparative hemolysis study of clinically available centrifugal pumps. Naito K, Suenaga E, Cao ZL, Suda H, Ueno T, Natsuaki M, Itoh T. Artif Organs; 1996 Jun; 20(6):560-3. PubMed ID: 8817955 [Abstract] [Full Text] [Related]
17. The Effect of Geometry on the Efficiency and Hemolysis of Centrifugal Implantable Blood Pumps. Mozafari S, Rezaienia MA, Paul GM, Rothman MT, Wen P, Korakianitis T. ASAIO J; 2017 Jun; 63(1):53-59. PubMed ID: 28033202 [Abstract] [Full Text] [Related]
18. Computational fluid dynamics analysis of a centrifugal blood pump with washout holes. Tsukamoto Y, Ito K, Sawairi T, Konishi Y, Yamane T, Nishida M, Masuzawa T, Tsukiya T, Endo S, Taenaka Y. Artif Organs; 2000 Aug; 24(8):648-52. PubMed ID: 10971255 [Abstract] [Full Text] [Related]
19. Effect of the Center Post Establishment and Its Design Variations on the Performance of a Centrifugal Rotary Blood Pump. Fang P, Du J, Yu S. Cardiovasc Eng Technol; 2020 Aug; 11(4):337-349. PubMed ID: 32410073 [Abstract] [Full Text] [Related]
20. Effect of a bearing gap on hemolytic property in a hydrodynamically levitated centrifugal blood pump with a semi-open impeller. Kosaka R, Nishida M, Maruyama O, Yambe T, Imachi K, Yamane T. Biomed Mater Eng; 2013 Aug; 23(1-2):37-47. PubMed ID: 23442235 [Abstract] [Full Text] [Related] Page: [Next] [New Search]