These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
240 related items for PubMed ID: 10463504
1. Computational fluid dynamics analysis to establish the design process of a centrifugal blood pump: second report. Miyazoe Y, Sawairi T, Ito K, Konishi Y, Yamane T, Nishida M, Asztalos B, Masuzawa T, Tsukiya T, Endo S, Taenaka Y. Artif Organs; 1999 Aug; 23(8):762-8. PubMed ID: 10463504 [Abstract] [Full Text] [Related]
2. Development of design methods for a centrifugal blood pump with a fluid dynamic approach: results in hemolysis tests. Masuzawa T, Tsukiya T, Endo S, Tatsumi E, Taenaka Y, Takano H, Yamane T, Nishida M, Asztalos B, Miyazoe Y, Ito K, Sawairi T, Konishi Y. Artif Organs; 1999 Aug; 23(8):757-61. PubMed ID: 10463503 [Abstract] [Full Text] [Related]
3. Computational fluid dynamic analyses to establish design process of centrifugal blood pumps. Miyazoe Y, Sawairi T, Ito K, Konishi Y, Yamane T, Nishida M, Masuzawa T, Takiura K, Taenaka Y. Artif Organs; 1998 May; 22(5):381-5. PubMed ID: 9609345 [Abstract] [Full Text] [Related]
4. Computational fluid dynamics analysis of a centrifugal blood pump with washout holes. Tsukamoto Y, Ito K, Sawairi T, Konishi Y, Yamane T, Nishida M, Masuzawa T, Tsukiya T, Endo S, Taenaka Y. Artif Organs; 2000 Aug; 24(8):648-52. PubMed ID: 10971255 [Abstract] [Full Text] [Related]
5. Development of design methods of a centrifugal blood pump with in vitro tests, flow visualization, and computational fluid dynamics: results in hemolysis tests. Takiura K, Masuzawa T, Endo S, Wakisaka Y, Tatsumi E, Taenaka Y, Takano H, Yamane T, Nishida M, Asztalos B, Konishi Y, Miyazoe Y, Ito K. Artif Organs; 1998 May; 22(5):393-8. PubMed ID: 9609347 [Abstract] [Full Text] [Related]
6. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump. Good BC, Manning KB. Artif Organs; 2020 Jul; 44(7):E263-E276. PubMed ID: 31971269 [Abstract] [Full Text] [Related]
7. Elimination of adverse leakage flow in a miniature pediatric centrifugal blood pump by computational fluid dynamics-based design optimization. Wu J, Antaki JF, Wagner WR, Snyder TA, Paden BE, Borovetz HS. ASAIO J; 2005 Jul; 51(5):636-43. PubMed ID: 16322730 [Abstract] [Full Text] [Related]
8. Flow visualization study to improve hemocompatibility of a centrifugal blood pump. Nishida M, Asztalos B, Yamane T, Masuzawa T, Tsukiya T, Endo S, Taenaka Y, Miyazoe Y, Ito K, Konishi Y. Artif Organs; 1999 Aug; 23(8):697-703. PubMed ID: 10463491 [Abstract] [Full Text] [Related]
9. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV). Hariharan P, Aycock KI, Buesen M, Day SW, Good BC, Herbertson LH, Steinseifer U, Manning KB, Craven BA, Malinauskas RA. Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585 [Abstract] [Full Text] [Related]
10. Quantification of the secondary flow in a radial coupled centrifugal blood pump based on particle tracking velocimetry. Watanabe N, Masuda T, Iida T, Kataoka H, Fujimoto T, Takatani S. Artif Organs; 2005 Jan; 29(1):26-35. PubMed ID: 15644080 [Abstract] [Full Text] [Related]
11. Computational fluid dynamics investigation of a centrifugal blood pump. Legendre D, Antunes P, Bock E, Andrade A, Biscegli JF, Ortiz JP. Artif Organs; 2008 Apr; 32(4):342-8. PubMed ID: 18370951 [Abstract] [Full Text] [Related]
12. Experimental and Numerical Investigation of an Axial Rotary Blood Pump. Schüle CY, Thamsen B, Blümel B, Lommel M, Karakaya T, Paschereit CO, Affeld K, Kertzscher U. Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467 [Abstract] [Full Text] [Related]
13. Computational fluid dynamics verified the advantages of streamlined impeller design in improving flow patterns and anti-haemolysis properties of centrifugal pump. Qian KX, Wang FQ, Zeng P, Ru WM, Yuan HY, Feng ZG. J Med Eng Technol; 2006 Nov; 30(6):353-7. PubMed ID: 17060163 [Abstract] [Full Text] [Related]
14. Quantitative visualization of flow through a centrifugal blood pump: effect of washout holes. Nishida M, Yamane T, Orita T, Asztalos B, Clarke H. Artif Organs; 1997 Jul; 21(7):720-9. PubMed ID: 9212946 [Abstract] [Full Text] [Related]
15. Application of computational fluid dynamics techniques to blood pumps. Sukumar R, Athavale MM, Makhijani VB, Przekwas AJ. Artif Organs; 1996 Jun; 20(6):529-33. PubMed ID: 8817950 [Abstract] [Full Text] [Related]
16. Heuristic optimization of impeller sidewall gaps-based on the bees algorithm for a centrifugal blood pump by CFD. Onder A, Incebay O, Sen MA, Yapici R, Kalyoncu M. Int J Artif Organs; 2021 Oct; 44(10):765-772. PubMed ID: 34128420 [Abstract] [Full Text] [Related]
17. CFD-Based Flow Channel Optimization and Performance Prediction for a Conical Axial Maglev Blood Pump. Yang W, Peng S, Xiao W, Hu Y, Wu H, Li M. Sensors (Basel); 2022 Feb 19; 22(4):. PubMed ID: 35214544 [Abstract] [Full Text] [Related]
18. Effect of the Center Post Establishment and Its Design Variations on the Performance of a Centrifugal Rotary Blood Pump. Fang P, Du J, Yu S. Cardiovasc Eng Technol; 2020 Aug 19; 11(4):337-349. PubMed ID: 32410073 [Abstract] [Full Text] [Related]
19. Flow visualization as a complementary tool to hemolysis testing in the development of centrifugal blood pumps. Yamane T, Asztalos B, Nishida M, Masuzawa T, Takiura K, Taenaka Y, Konishi Y, Miyazoe Y, Ito K. Artif Organs; 1998 May 19; 22(5):375-80. PubMed ID: 9609344 [Abstract] [Full Text] [Related]
20. Effect of blade curvature on the hemolytic and hydraulic characteristics of a centrifugal blood pump. Ozturk C, Aka IB, Lazoglu I. Int J Artif Organs; 2018 Nov 19; 41(11):730-737. PubMed ID: 29998774 [Abstract] [Full Text] [Related] Page: [Next] [New Search]