These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


111 related items for PubMed ID: 10468054

  • 1. Effects of N(omega)-nitro-L-arginine (L-NOARG) on blood flow and vasomotion in rat diaphragm microcirculation during hemorrhagic hypotension.
    Chen CW, Hsiue TR, Chang HY.
    Shock; 1999 Jul; 12(1):69-74. PubMed ID: 10468054
    [Abstract] [Full Text] [Related]

  • 2. Comparative effects of L-NOARG and L-NAME on basal blood flow and ACh-induced vasodilatation in rat diaphragmatic microcirculation.
    Chang HY, Chen CW, Hsiue TR.
    Br J Pharmacol; 1997 Jan; 120(2):326-32. PubMed ID: 9117127
    [Abstract] [Full Text] [Related]

  • 3. The role of nitric oxide in the spatial heterogeneity of basal microvascular blood flow in the rat diaphragm.
    Lee CH, Chang HY, Chen CW, Hsiue TR.
    J Biomed Sci; 2005 Jan; 12(1):197-207. PubMed ID: 15864750
    [Abstract] [Full Text] [Related]

  • 4. Role of nitric oxide in vasodilator response induced by salbutamol in rat diaphragmatic microcirculation.
    Chang HY.
    Am J Physiol; 1997 May; 272(5 Pt 2):H2173-9. PubMed ID: 9176283
    [Abstract] [Full Text] [Related]

  • 5. Requirement for endothelium-derived nitric oxide in vasodilation produced by stimulation of cholinergic nerves in rat hindquarters.
    Loke KE, Sobey CG, Dusting GJ, Woodman OL.
    Br J Pharmacol; 1994 Jun; 112(2):630-4. PubMed ID: 8075880
    [Abstract] [Full Text] [Related]

  • 6. Ischaemia enhances the role of Ca2+-activated K+ channels in endothelium-dependent and nitric oxide-mediated dilatation of the rat hindquarters vasculature.
    Woodman OL, Wongsawatkul O.
    Clin Exp Pharmacol Physiol; 2004 Apr; 31(4):254-60. PubMed ID: 15053823
    [Abstract] [Full Text] [Related]

  • 7. Regulation of baseline vascular resistance in the canine diaphragm by nitric oxide.
    Ward ME, Hussain SN.
    Br J Pharmacol; 1994 May; 112(1):65-70. PubMed ID: 8032663
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Selective iNOS inhibition prevents hypotension in septic rats while preserving endothelium-dependent vasodilation.
    Strunk V, Hahnenkamp K, Schneuing M, Fischer LG, Rich GF.
    Anesth Analg; 2001 Mar; 92(3):681-7. PubMed ID: 11226101
    [Abstract] [Full Text] [Related]

  • 10. Differential effects of nitric oxide synthesis inhibitor on rat diaphragmatic microcirculation under basal conditions and after vasodilator stimulation.
    Chang HY, Chen CW, Hsiue TR, Chen CR.
    J Formos Med Assoc; 1994 Sep; 93(9):788-96. PubMed ID: 7735009
    [Abstract] [Full Text] [Related]

  • 11. Vasomotion in rat diaphragm microcirculation at rest and during stepwise arterial pressure reduction.
    Chen CW, Lee CH, Hsiue TR, Chang HY.
    Acta Physiol Scand; 1997 Nov; 161(3):281-8. PubMed ID: 9401579
    [Abstract] [Full Text] [Related]

  • 12. Role of nitric oxide in regulation of brain stem circulation during hypotension.
    Toyoda K, Fujii K, Ibayashi S, Nagao T, Kitazono T, Fujishima M.
    J Cereb Blood Flow Metab; 1997 Oct; 17(10):1089-96. PubMed ID: 9346434
    [Abstract] [Full Text] [Related]

  • 13. Modulation of hemorrhagic shock by intestinal mucosal NG-nitro-L-arginine and L-arginine in the anesthetized rat.
    Mailman D.
    Shock; 1999 Aug; 12(2):155-60. PubMed ID: 10446897
    [Abstract] [Full Text] [Related]

  • 14. Effects of nitric oxide synthesis blockade and angiotensin II on blood flow and spontaneous vasomotion in the rat cerebral microcirculation.
    Morita-Tsuzuki Y, Bouskela E, Hardebo JE.
    Acta Physiol Scand; 1993 Aug; 148(4):449-54. PubMed ID: 8213199
    [Abstract] [Full Text] [Related]

  • 15. Mechanisms of stroke in sickle cell disease: sickle erythrocytes decrease cerebral blood flow in rats after nitric oxide synthase inhibition.
    French JA, Kenny D, Scott JP, Hoffmann RG, Wood JD, Hudetz AG, Hillery CA.
    Blood; 1997 Jun 15; 89(12):4591-9. PubMed ID: 9192784
    [Abstract] [Full Text] [Related]

  • 16. Inhibition of nitric oxide synthesis by NG-nitro-L-arginine methyl ester (L-NAME): requirement for bioactivation to the free acid, NG-nitro-L-arginine.
    Pfeiffer S, Leopold E, Schmidt K, Brunner F, Mayer B.
    Br J Pharmacol; 1996 Jul 15; 118(6):1433-40. PubMed ID: 8832069
    [Abstract] [Full Text] [Related]

  • 17. The role of nitric oxide in the cerebrovascular response to hypercapnia.
    Smith JJ, Lee JG, Hudetz AG, Hillard CJ, Bosnjak ZJ, Kampine JP.
    Anesth Analg; 1997 Feb 15; 84(2):363-9. PubMed ID: 9024030
    [Abstract] [Full Text] [Related]

  • 18. Effect of prostaglandins and nitric oxide on basal blood flow and acetylcholine-induced vasodilation in rat diaphragmatic microcirculation.
    Chang HY, Chen CW, Hsiue TR, Chen CR.
    J Formos Med Assoc; 1995 Jun 15; 94(6):332-40. PubMed ID: 7549553
    [Abstract] [Full Text] [Related]

  • 19. Acetylcholine-induced and nitric oxide-mediated vasodilation in burns.
    Meng F, Korompai FL, Lynch DM, Yuan YS.
    J Surg Res; 1998 Dec 15; 80(2):236-42. PubMed ID: 9878319
    [Abstract] [Full Text] [Related]

  • 20. Nitric oxide and sensory nerves are involved in the vasodilator response to acetylcholine but not calcitonin gene-related peptide in rat skin microvasculature.
    Ralevic V, Khalil Z, Dusting GJ, Helme RD.
    Br J Pharmacol; 1992 Jul 15; 106(3):650-5. PubMed ID: 1504748
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.