These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


130 related items for PubMed ID: 10468636

  • 1. Mitomycin resistance in mammalian cells expressing the bacterial mitomycin C resistance protein MCRA.
    Belcourt MF, Penketh PG, Hodnick WF, Johnson DA, Sherman DH, Rockwell S, Sartorelli AC.
    Proc Natl Acad Sci U S A; 1999 Aug 31; 96(18):10489-94. PubMed ID: 10468636
    [Abstract] [Full Text] [Related]

  • 2. Reversal of mitomycin C resistance by overexpression of bioreductive enzymes in Chinese hamster ovary cells.
    Baumann RP, Hodnick WF, Seow HA, Belcourt MF, Rockwell S, Sherman DH, Sartorelli AC.
    Cancer Res; 2001 Nov 01; 61(21):7770-6. PubMed ID: 11691791
    [Abstract] [Full Text] [Related]

  • 3. Inducible synthesis of the mitomycin C resistance gene product (MCRA) from Streptomyces lavendulae.
    August PR, Rahn JA, Flickinger MC, Sherman DH.
    Gene; 1996 Oct 10; 175(1-2):261-7. PubMed ID: 8917108
    [Abstract] [Full Text] [Related]

  • 4. Novel selection marker for mammalian cell transfection.
    Baumann RP, Sherman DH, Sartorelli AC.
    Biotechniques; 2002 May 10; 32(5):1030, 1032, 1034 passim. PubMed ID: 12019775
    [Abstract] [Full Text] [Related]

  • 5. Cytotoxicity and DNA lesions produced by mitomycin C and porfiromycin in hypoxic and aerobic EMT6 and Chinese hamster ovary cells.
    Fracasso PM, Sartorelli AC.
    Cancer Res; 1986 Aug 10; 46(8):3939-44. PubMed ID: 3089583
    [Abstract] [Full Text] [Related]

  • 6. Differential toxicity of mitomycin C and porfiromycin to aerobic and hypoxic Chinese hamster ovary cells overexpressing human NADPH:cytochrome c (P-450) reductase.
    Belcourt MF, Hodnick WF, Rockwell S, Sartorelli AC.
    Proc Natl Acad Sci U S A; 1996 Jan 09; 93(1):456-60. PubMed ID: 8552660
    [Abstract] [Full Text] [Related]

  • 7. Cloning and analysis of a locus (mcr) involved in mitomycin C resistance in Streptomyces lavendulae.
    August PR, Flickinger MC, Sherman DH.
    J Bacteriol; 1994 Jul 09; 176(14):4448-54. PubMed ID: 7517396
    [Abstract] [Full Text] [Related]

  • 8. Exploring the mechanistic aspects of mitomycin antibiotic bioactivation in Chinese hamster ovary cells overexpressing NADPH:cytochrome C (P-450) reductase and DT-diaphorase.
    Belcourt MF, Hodnick WF, Rockwell S, Sartorelli AC.
    Adv Enzyme Regul; 1998 Jul 09; 38():111-33. PubMed ID: 9762350
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Decreased NADPH:cytochrome P-450 reductase activity and impaired drug activation in a mammalian cell line resistant to mitomycin C under aerobic but not hypoxic conditions.
    Hoban PR, Walton MI, Robson CN, Godden J, Stratford IJ, Workman P, Harris AL, Hickson ID.
    Cancer Res; 1990 Aug 01; 50(15):4692-7. PubMed ID: 2114946
    [Abstract] [Full Text] [Related]

  • 12. Bioactivation of mitomycin antibiotics by aerobic and hypoxic Chinese hamster ovary cells overexpressing DT-diaphorase.
    Belcourt MF, Hodnick WF, Rockwell S, Sartorelli AC.
    Biochem Pharmacol; 1996 Jun 28; 51(12):1669-78. PubMed ID: 8687482
    [Abstract] [Full Text] [Related]

  • 13. Effect of the superoxide dismutase inhibitor, diethyldithiocarbamate, on the cytotoxicity of mitomycin antibiotics.
    Pritsos CA, Keyes SR, Sartorelli AC.
    Cancer Biochem Biophys; 1989 Oct 28; 10(4):289-98. PubMed ID: 2559790
    [Abstract] [Full Text] [Related]

  • 14. Nuclear overexpression of NAD(P)H:quinone oxidoreductase 1 in Chinese hamster ovary cells increases the cytotoxicity of mitomycin C under aerobic and hypoxic conditions.
    Seow HA, Penketh PG, Belcourt MF, Tomasz M, Rockwell S, Sartorelli AC.
    J Biol Chem; 2004 Jul 23; 279(30):31606-12. PubMed ID: 15155746
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Cytotoxic potential of monoalkylation products between mitomycins and DNA: studies of decarbamoyl mitomycin C in wild-type and repair-deficient cell lines.
    Kim SY, Rockwell S.
    Oncol Res; 1995 Jul 23; 7(5):39-47. PubMed ID: 8534933
    [Abstract] [Full Text] [Related]

  • 17. Oxygen and exposure kinetics as factors influencing the cytotoxicity of porfiromycin, a mitomycin C analogue, in Chinese hamster ovary cells.
    Marshall RS, Rauth AM.
    Cancer Res; 1988 Oct 15; 48(20):5655-9. PubMed ID: 3167822
    [Abstract] [Full Text] [Related]

  • 18. Characterization of a mitomycin-binding drug resistance mechanism from the producing organism, Streptomyces lavendulae.
    Sheldon PJ, Johnson DA, August PR, Liu HW, Sherman DH.
    J Bacteriol; 1997 Mar 15; 179(5):1796-804. PubMed ID: 9045843
    [Abstract] [Full Text] [Related]

  • 19. Effects of mitomycin C and porfiromycin on exponentially growing and plateau phase cultures.
    Rockwell S, Hughes CS.
    Cell Prolif; 1994 Mar 15; 27(3):153-63. PubMed ID: 10465006
    [Abstract] [Full Text] [Related]

  • 20. Cytotoxicity and DNA crosslinks produced by mitomycin analogs in aerobic and hypoxic EMT6 cells.
    Keyes SR, Loomis R, DiGiovanna MP, Pritsos CA, Rockwell S, Sartorelli AC.
    Cancer Commun; 1991 Mar 15; 3(10-11):351-6. PubMed ID: 1760250
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.