These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


123 related items for PubMed ID: 10470570

  • 1. Aspiration of dead space allows normocapnic ventilation at low tidal volumes in man.
    De Robertis E, Servillo G, Jonson B, Tufano R.
    Intensive Care Med; 1999 Jul; 25(7):674-9. PubMed ID: 10470570
    [Abstract] [Full Text] [Related]

  • 2. Aspiration of airway dead space. A new method to enhance CO2 elimination.
    De Robertis E, Sigurdsson SE, Drefeldt B, Jonson B.
    Am J Respir Crit Care Med; 1999 Mar; 159(3):728-32. PubMed ID: 10051243
    [Abstract] [Full Text] [Related]

  • 3. Aspiration of dead space allows isocapnic low tidal volume ventilation in acute lung injury. Relationships to gas exchange and mechanics.
    De Robertis E, Servillo G, Tufano R, Jonson B.
    Intensive Care Med; 2001 Sep; 27(9):1496-503. PubMed ID: 11685343
    [Abstract] [Full Text] [Related]

  • 4. Aspiration of dead space in the management of chronic obstructive pulmonary disease patients with respiratory failure.
    Liu YN, Zhao WG, Xie LX, Cao DS, Chen LA, Zhang JP, Zhang B, Ma YM, Li YZ, Zhang XG, Jia YH.
    Respir Care; 2004 Mar; 49(3):257-62. PubMed ID: 14982645
    [Abstract] [Full Text] [Related]

  • 5. Re-inspiration of CO(2) from ventilator circuit: effects of circuit flushing and aspiration of dead space up to high respiratory rate.
    De Robertis E, Uttman L, Jonson B.
    Crit Care; 2010 Mar; 14(2):R73. PubMed ID: 20420671
    [Abstract] [Full Text] [Related]

  • 6. [Effects of aspiration of airway dead space on blood gases and respiratory mechanics in acute hypercapnia model dogs].
    Zhao W, Liu Y, Gao D.
    Zhonghua Jie He He Hu Xi Za Zhi; 2001 Nov; 24(11):643-6. PubMed ID: 16136899
    [Abstract] [Full Text] [Related]

  • 7. The effects of passive humidifier dead space on respiratory variables in paralyzed and spontaneously breathing patients.
    Campbell RS, Davis K, Johannigman JA, Branson RD.
    Respir Care; 2000 Mar; 45(3):306-12. PubMed ID: 10771799
    [Abstract] [Full Text] [Related]

  • 8. Computer simulation allows goal-oriented mechanical ventilation in acute respiratory distress syndrome.
    Uttman L, Ogren H, Niklason L, Drefeldt B, Jonson B.
    Crit Care; 2007 Mar; 11(2):R36. PubMed ID: 17352801
    [Abstract] [Full Text] [Related]

  • 9. The effect of increased apparatus dead space and tidal volumes on carbon dioxide elimination and oxygen saturations in a low-flow anesthesia system.
    Enekvist BJ, Luttropp HH, Johansson A.
    J Clin Anesth; 2008 May; 20(3):170-4. PubMed ID: 18502358
    [Abstract] [Full Text] [Related]

  • 10. Tracheal gas insufflation reduces the tidal volume while PaCO2 is maintained constant.
    Nakos G, Zakinthinos S, Kotanidou A, Tsagaris H, Roussos C.
    Intensive Care Med; 1994 Jul; 20(6):407-13. PubMed ID: 7798444
    [Abstract] [Full Text] [Related]

  • 11. Auto-positive end-expiratory pressure during tracheal gas insufflation: testing a hypothetical model.
    Miro AM, Hoffman LA, Tasota FJ, Delgado E, Lutz J, Zullo TG, Pinsky MR.
    Crit Care Med; 2000 Oct; 28(10):3474-9. PubMed ID: 11057803
    [Abstract] [Full Text] [Related]

  • 12. Tracheal gas insufflation augments CO2 clearance during mechanical ventilation.
    Ravenscraft SA, Burke WC, Nahum A, Adams AB, Nakos G, Marcy TW, Marini JJ.
    Am Rev Respir Dis; 1993 Aug; 148(2):345-51. PubMed ID: 8342897
    [Abstract] [Full Text] [Related]

  • 13. Physiological effects of reduced tidal volume at constant minute ventilation and inspiratory flow rate in acute respiratory distress syndrome.
    Kiiski R, Kaitainen S, Karppi R, Takala J.
    Intensive Care Med; 1996 Mar; 22(3):192-8. PubMed ID: 8727431
    [Abstract] [Full Text] [Related]

  • 14. Expiratory washout versus optimization of mechanical ventilation during permissive hypercapnia in patients with severe acute respiratory distress syndrome.
    Richecoeur J, Lu Q, Vieira SR, Puybasset L, Kalfon P, Coriat P, Rouby JJ.
    Am J Respir Crit Care Med; 1999 Jul; 160(1):77-85. PubMed ID: 10390383
    [Abstract] [Full Text] [Related]

  • 15. Predicting dead space ventilation in critically ill patients using clinically available data.
    Frankenfield DC, Alam S, Bekteshi E, Vender RL.
    Crit Care Med; 2010 Jan; 38(1):288-91. PubMed ID: 19789453
    [Abstract] [Full Text] [Related]

  • 16. Intratracheal pulmonary ventilation in a rabbit lung injury model: continuous airway pressure monitoring and gas exchange efficacy.
    Hon EK, Hultquist KA, Loescher T, Raszynski A, Torbati D, Tabares C, Wolfsdorf J.
    Crit Care Med; 2000 Jul; 28(7):2480-5. PubMed ID: 10921582
    [Abstract] [Full Text] [Related]

  • 17. Effect of inspiratory flow rate on the efficiency of carbon dioxide removal at tidal volumes below instrumental dead space.
    Hurley EH, Keszler M.
    Arch Dis Child Fetal Neonatal Ed; 2017 Mar; 102(2):F126-F130. PubMed ID: 27515984
    [Abstract] [Full Text] [Related]

  • 18. Efficacy of expiratory tracheal gas insufflation in a canine model of lung injury.
    Nahum A, Shapiro RS, Ravenscraft SA, Adams AB, Marini JJ.
    Am J Respir Crit Care Med; 1995 Aug; 152(2):489-95. PubMed ID: 7633697
    [Abstract] [Full Text] [Related]

  • 19. Modes of tracheal gas insufflation. Comparison of continuous and phase-specific gas injection in normal dogs.
    Burke WC, Nahum A, Ravenscraft SA, Nakos G, Adams AB, Marcy TW, Marini JJ.
    Am Rev Respir Dis; 1993 Sep; 148(3):562-8. PubMed ID: 8368624
    [Abstract] [Full Text] [Related]

  • 20. Automatic selection of tidal volume, respiratory frequency and minute ventilation in intubated ICU patients as start up procedure for closed-loop controlled ventilation.
    Laubscher TP, Frutiger A, Fanconi S, Jutzi H, Brunner JX.
    Int J Clin Monit Comput; 1994 Feb; 11(1):19-30. PubMed ID: 8195655
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.