These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


500 related items for PubMed ID: 10471295

  • 21. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R, Kavanagh KL, Wilson DK, Nidetzky B.
    Biochemistry; 2004 May 04; 43(17):4944-54. PubMed ID: 15109252
    [Abstract] [Full Text] [Related]

  • 22. Residues that influence coenzyme preference in the aldehyde dehydrogenases.
    González-Segura L, Riveros-Rosas H, Julián-Sánchez A, Muñoz-Clares RA.
    Chem Biol Interact; 2015 Jun 05; 234():59-74. PubMed ID: 25601141
    [Abstract] [Full Text] [Related]

  • 23. Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli K-12 that utilizes 3-Hydroxypropionaldehyde as a substrate.
    Jo JE, Mohan Raj S, Rathnasingh C, Selvakumar E, Jung WC, Park S.
    Appl Microbiol Biotechnol; 2008 Nov 05; 81(1):51-60. PubMed ID: 18668238
    [Abstract] [Full Text] [Related]

  • 24. The crystal structure of d-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Methanothermus fervidus in the presence of NADP(+) at 2.1 A resolution.
    Charron C, Talfournier F, Isupov MN, Littlechild JA, Branlant G, Vitoux B, Aubry A.
    J Mol Biol; 2000 Mar 24; 297(2):481-500. PubMed ID: 10715215
    [Abstract] [Full Text] [Related]

  • 25. Probing the kinetic mechanism and coenzyme specificity of glutathione reductase from the cyanobacterium Anabaena PCC 7120 by redesign of the pyridine-nucleotide-binding site.
    Danielson UH, Jiang F, Hansson LO, Mannervik B.
    Biochemistry; 1999 Jul 20; 38(29):9254-63. PubMed ID: 10413499
    [Abstract] [Full Text] [Related]

  • 26. A novel nicotinoprotein aldehyde dehydrogenase involved in polyethylene glycol degradation.
    Ohta T, Tani A, Kimbara K, Kawai F.
    Appl Microbiol Biotechnol; 2005 Sep 20; 68(5):639-46. PubMed ID: 15726348
    [Abstract] [Full Text] [Related]

  • 27. The crystal structure of a ternary complex of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa Provides new insight into the reaction mechanism and shows a novel binding mode of the 2'-phosphate of NADP+ and a novel cation binding site.
    González-Segura L, Rudiño-Piñera E, Muñoz-Clares RA, Horjales E.
    J Mol Biol; 2009 Jan 16; 385(2):542-57. PubMed ID: 19013472
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Shifting the NAD/NADP preference in class 3 aldehyde dehydrogenase.
    Perozich J, Kuo I, Wang BC, Boesch JS, Lindahl R, Hempel J.
    Eur J Biochem; 2000 Oct 16; 267(20):6197-203. PubMed ID: 11012673
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Role of the highly conserved histidine residues in rat liver mitochondrial aldehyde dehydrogenase as studied by site-directed mutagenesis.
    Zheng CF, Weiner H.
    Arch Biochem Biophys; 1993 Sep 16; 305(2):460-6. PubMed ID: 8373184
    [Abstract] [Full Text] [Related]

  • 32. Aldehyde reductase: the role of C-terminal residues in defining substrate and cofactor specificities.
    Rees-Milton KJ, Jia Z, Green NC, Bhatia M, El-Kabbani O, Flynn TG.
    Arch Biochem Biophys; 1998 Jul 15; 355(2):137-44. PubMed ID: 9675019
    [Abstract] [Full Text] [Related]

  • 33. Selective alteration of the rate-limiting step in cytosolic aldehyde dehydrogenase through random mutagenesis.
    Ho KK, Hurley TD, Weiner H.
    Biochemistry; 2006 Aug 08; 45(31):9445-53. PubMed ID: 16878979
    [Abstract] [Full Text] [Related]

  • 34. Structural differences between wild-type NADP-dependent glutathione reductase from Escherichia coli and a redesigned NAD-dependent mutant.
    Mittl PR, Berry A, Scrutton NS, Perham RN, Schulz GE.
    J Mol Biol; 1993 May 20; 231(2):191-5. PubMed ID: 8510142
    [Abstract] [Full Text] [Related]

  • 35. Probing the determinants of coenzyme specificity in Peptostreptococcus asaccharolyticus glutamate dehydrogenase by site-directed mutagenesis.
    Carrigan JB, Engel PC.
    FEBS J; 2007 Oct 20; 274(19):5167-74. PubMed ID: 17850332
    [Abstract] [Full Text] [Related]

  • 36. Converting NAD-specific inositol dehydrogenase to an efficient NADP-selective catalyst, with a surprising twist.
    Zheng H, Bertwistle D, Sanders DA, Palmer DR.
    Biochemistry; 2013 Aug 27; 52(34):5876-83. PubMed ID: 23952058
    [Abstract] [Full Text] [Related]

  • 37. Structural and functional studies of a NADP(+)-specific aldehyde dehydrogenase from the luminescent marine bacterium Vibrio harveyi.
    Vedadi M, Croteau N, Delarge M, Vrielink A, Meighen E.
    Adv Exp Med Biol; 1997 Aug 27; 414():269-75. PubMed ID: 9059630
    [No Abstract] [Full Text] [Related]

  • 38. Purification, characterization and cloning of aldehyde dehydrogenase from Rhodococcus erythropolis UPV-1.
    Jaureguibeitia A, Saá L, Llama MJ, Serra JL.
    Appl Microbiol Biotechnol; 2007 Jan 27; 73(5):1073-86. PubMed ID: 16944126
    [Abstract] [Full Text] [Related]

  • 39. Changes in the kinetics and emission spectrum on mutation of the chromophore-binding platform in Vibrio harveyi luciferase.
    Lin LY, Szittner R, Friedman R, Meighen EA.
    Biochemistry; 2004 Mar 23; 43(11):3183-94. PubMed ID: 15023068
    [Abstract] [Full Text] [Related]

  • 40. Cytosolic NADP phosphatases I and II from Arthrobacter sp. strain KM: implication in regulation of NAD+/NADP+ balance.
    Kawai S, Mori S, Mukai T, Murata K.
    J Basic Microbiol; 2004 Mar 23; 44(3):185-96. PubMed ID: 15162392
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 25.