These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


497 related items for PubMed ID: 10473258

  • 1. Organization of geniculate and trigeminal ganglion cells innervating single fungiform taste papillae: a study with tetramethylrhodamine dextran amine labeling.
    Whitehead MC, Ganchrow JR, Ganchrow D, Yao B.
    Neuroscience; 1999; 93(3):931-41. PubMed ID: 10473258
    [Abstract] [Full Text] [Related]

  • 2. Discrete innervation of murine taste buds by peripheral taste neurons.
    Zaidi FN, Whitehead MC.
    J Neurosci; 2006 Aug 09; 26(32):8243-53. PubMed ID: 16899719
    [Abstract] [Full Text] [Related]

  • 3. Alterations in size, number, and morphology of gustatory papillae and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs.
    Mistretta CM, Goosens KA, Farinas I, Reichardt LF.
    J Comp Neurol; 1999 Jun 21; 409(1):13-24. PubMed ID: 10363708
    [Abstract] [Full Text] [Related]

  • 4. Epithelial overexpression of BDNF or NT4 disrupts targeting of taste neurons that innervate the anterior tongue.
    Krimm RF, Miller KK, Kitzman PH, Davis BM, Albers KM.
    Dev Biol; 2001 Apr 15; 232(2):508-21. PubMed ID: 11401409
    [Abstract] [Full Text] [Related]

  • 5. Development of fungiform papillae, taste buds, and their innervation in the hamster.
    Whitehead MC, Kachele DL.
    J Comp Neurol; 1994 Feb 22; 340(4):515-30. PubMed ID: 8006215
    [Abstract] [Full Text] [Related]

  • 6. Mice with a targeted disruption of the neurotrophin receptor trkB lose their gustatory ganglion cells early but do develop taste buds.
    Fritzsch B, Sarai PA, Barbacid M, Silos-Santiago I.
    Int J Dev Neurosci; 1997 Jul 22; 15(4-5):563-76. PubMed ID: 9263033
    [Abstract] [Full Text] [Related]

  • 7. The transcription factor Phox2b distinguishes between oral and non-oral sensory neurons in the geniculate ganglion.
    Ohman-Gault L, Huang T, Krimm R.
    J Comp Neurol; 2017 Dec 15; 525(18):3935-3950. PubMed ID: 28856690
    [Abstract] [Full Text] [Related]

  • 8. Early development and innervation of taste bud-bearing papillae on the rat tongue.
    Farbman AI, Mbiene JP.
    J Comp Neurol; 1991 Feb 08; 304(2):172-86. PubMed ID: 2016415
    [Abstract] [Full Text] [Related]

  • 9. Exuberant neuronal convergence onto reduced taste bud targets with preservation of neural specificity in mice overexpressing neurotrophin in the tongue epithelium.
    Zaidi FN, Krimm RF, Whitehead MC.
    J Neurosci; 2007 Dec 12; 27(50):13875-81. PubMed ID: 18077699
    [Abstract] [Full Text] [Related]

  • 10. Innervation of single fungiform taste buds during development in rat.
    Krimm RF, Hill DL.
    J Comp Neurol; 1998 Aug 17; 398(1):13-24. PubMed ID: 9703025
    [Abstract] [Full Text] [Related]

  • 11. Initial innervation of embryonic rat tongue and developing taste papillae: nerves follow distinctive and spatially restricted pathways.
    Mbiene JP, Mistretta CM.
    Acta Anat (Basel); 1997 Aug 17; 160(3):139-58. PubMed ID: 9718388
    [Abstract] [Full Text] [Related]

  • 12. Organ cultures of embryonic rat tongue support tongue and gustatory papilla morphogenesis in vitro without intact sensory ganglia.
    Mbiene JP, Maccallum DK, Mistretta CM.
    J Comp Neurol; 1997 Jan 20; 377(3):324-40. PubMed ID: 8989649
    [Abstract] [Full Text] [Related]

  • 13. Temporal and spatial patterns of tenascin and laminin immunoreactivity suggest roles for extracellular matrix in development of gustatory papillae and taste buds.
    Mistretta CM, Haus LF.
    J Comp Neurol; 1996 Jan 15; 364(3):535-555. PubMed ID: 8820882
    [Abstract] [Full Text] [Related]

  • 14. Each sensory nerve arising from the geniculate ganglion expresses a unique fingerprint of neurotrophin and neurotrophin receptor genes.
    Farbman AI, Guagliardo N, Sollars SI, Hill DL.
    J Neurosci Res; 2004 Dec 01; 78(5):659-67. PubMed ID: 15495212
    [Abstract] [Full Text] [Related]

  • 15. Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster.
    Ganchrow D, Ganchrow JR, Verdin-Alcazar M, Whitehead MC.
    J Comp Neurol; 2003 Jan 01; 455(1):11-24. PubMed ID: 12454993
    [Abstract] [Full Text] [Related]

  • 16. Oral Sensory Neurons of the Geniculate Ganglion That Express Tyrosine Hydroxylase Comprise a Subpopulation That Contacts Type II and Type III Taste Bud Cells.
    Tang T, Pierchala BA.
    eNeuro; 2022 Jan 01; 9(5):. PubMed ID: 36216506
    [Abstract] [Full Text] [Related]

  • 17. Quantitative relationships between taste bud development and gustatory ganglion cells.
    Krimm RF, Hill DL.
    Ann N Y Acad Sci; 1998 Nov 30; 855():70-5. PubMed ID: 9929587
    [Abstract] [Full Text] [Related]

  • 18. Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster after sensory denervation.
    Ganchrow D, Ganchrow JR, Verdin-Alcazar M, Whitehead MC.
    J Comp Neurol; 2003 Jan 01; 455(1):25-39. PubMed ID: 12454994
    [Abstract] [Full Text] [Related]

  • 19. Regeneration of fungiform taste buds: temporal and spatial characteristics.
    Cheal M, Oakley B.
    J Comp Neurol; 1977 Apr 15; 172(4):609-26. PubMed ID: 838892
    [Abstract] [Full Text] [Related]

  • 20. Spatial distribution of rat fungiform papillae.
    Miller IJ, Preslar AJ.
    Anat Rec; 1975 Mar 15; 181(3):679-84. PubMed ID: 1122041
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.